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EXECUTIVE SUMMARY 

To reduce the occurrence of motor-vehicle crashes, professionals in education, enforcement, and 

engineering are continually tasked with implementing safety solutions. Identifying locations of high rates 

of crashes allows safety solutions to more adequately target their intended audience. This research 

examines advances in identifying hot spots of motor-vehicle crashes. These advancements come from 

improving: 1) the calculation of spatial autocorrelation and interpolation, 2) the identification of spatio-

temporal patterns, and 3) the influence of geographical patterns on the spatial distribution of crashes. 

Overall, by improving the hot spot analysis, concerned professionals may be better prepared and lower 

the number of alcohol-related crashes. 

The location of hot spots is important in the implementation of enforcement campaigns. A lapse in 

accuracy may allow a vehicle operator suspected of disobeying traffic laws from being properly 

disciplined. Improvements in the calculation of spatial autocorrelation and interpolation result from the 

use of network distances instead of Euclidean based distances. Network based distances increase the 

accuracy of resulting hot spots.  

With the accuracy of hot spots improved, the optimal times to implement safety campaigns in their 

identified areas become important. Many hot spots purely analyze crashes as if they all occurred at the 

same time. By investigating crashes in this manner, some key influences may be lost and the efficiency 

of the implemented campaign may be reduced. Spatio-temporal hot spots are examined and show that 

as time progresses, clusters of crashes occur and disappear throughout space. By moving campaign sites 

as the location of crashes move, the overall efficiency of campaign tactics would benefit. 

Hot spots of crashes have continually been scrutinized for their focus on areas of large populations. In an 

effort to rectify this belief, the normalization of hot spot is examined in relation to population density. It 

is found that the strict use of population density provides unfavorable results. Instead, the identification 

of hot spots through either the frequency or societal crash costs varies the resulting hot spot location. 

Using crash frequency allows for high visibility/mass target campaigns to best be realized. Meanwhile, 

the use of societal costs best targets high valued crash occurrences. 

The use of hot spots may be beneficial in improving campaigns to reduce alcohol-related crashes. Once 

the hot spot maps are created, this research uses the results to develop a new method of patrolling for 

intoxicated drivers. The hot spot maps are broken down into local indicators of spatial association, 

which show statistically significant locations where intoxicated drivers are likely to be present. Route 

optimization models are then used to guide officers to these locations. These models are compared with 

traditional methods of corridor patrolling through a series of performance metrics. Failure probability 

models are then created to further compare the two methods of patrolling, as well as aiding captains of 

jurisdictions in decision-making processes. 



 

 

By utilizing location-based hot spots, new methodologies of patrolling may be developed in order to 

reduce the amount of alcohol-related crashes. This new method of patrolling will guide officers to 

statistically significant locations, allowing them to be more accurate while patrolling for intoxicated 

drivers. Additionally, this method proves to pass through more alcohol-related crash locations per 

minute and mile, indicating it may be more efficient than current practices of patrolling. By improving 

how officers patrol, people may more accurately be deterred from driving intoxicated and alcohol-

related crashes may be ultimately reduced.
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CHAPTER 1:   INTRODUCTION 

Motor vehicle crashes claim dozens of lives each day. In 2012 alone, there were 33,561 total motor 

vehicle fatalities in the United States (NHTSA, 2014). One type of crash that contains high rates of injury 

and concern to motor vehicle safety officials is alcohol-related crashes. The fatality rate in 2012 for 

instances when an operator of a motor vehicle has a blood alcohol concentration (BAC) of 0.08% or 

greater, is 3.29 per 100,000 people (NHTSA, 2015). The use of alcohol, additionally, seems to affect 

males more than females, as 24 percent of males operating a motor vehicle involved in a fatal crash had 

a BAC of 0.08% or greater. Meanwhile, the amount of females operating a motor vehicle involved in a 

fatal crash while having a BAC of 0.08% or greater was much less, at 14 percent. The factors and 

contributing circumstances vary greatly between crashes, but the bottom line is that a significant 

number of people die each year in cases where preventable measures could have been taken to avoid 

the loss of life. The clear issues are defining preventable measures and then implementing them into 

practice. Saving lives is the goal and responsibility of our collective transportation community. In order 

to reduce crashes, it is up to law enforcement, educators, engineers, researchers, doctors, lawyers, 

judges and others to determine the pertinent information that is used to create the grant funding 

opportunities, educational campaigns, and laws that keep our roadways safe. The tools that help these 

developers work together in the flow of information and data are critical.  

One such tool is the spatial mapping of motor vehicle crashes. Mapping crash locations allows for a 

visual identification of high impact locations, trends, and outliers. This visual identification follows the 

goal of Data-Driven Approaches to Crime and Traffic Safety (DDACTS), set out by the National Highway 

Traffic Safety Administration (NHTSA), which is to develop a data driven approach to identify geospatial 

areas with higher crash and crime problem areas (US DOT, 2009). The crashes analyzed from mapping 

are located either through geocoding the addresses/reference points or latitude/longitude coordinates 

obtained from crash reports and crime reports. The visual representation of the distribution may draw 

some initial conclusions; however, multiple crashes that occur near the same location may, at first 

glance, appear as a single occurrence. Due to the possible misidentification of multiple crashes, a further 

investigation must be performed before any real solutions may be obtained. In addition, many options 

are available for identifying trends in spatial data, and the mapping of the crashes must be used to 

facilitate this form of analysis. 

The identification of spatial distributions within motor vehicle crashes allows pertinent safety campaigns 

to adequately address the relevant motorists on the roadway. Efforts in the campaigns may come in the 

form of determining which locations are most hazardous to motorists or the contributing factors that 

are harmful to motorists. The pertinent hazardous locations may then be used as a target area in which 

to implement a campaign. While using hot spot maps allows for aids in identifying drivers operating a 

vehicle under the influence of alcohol, the link between crashes and the implemented safety campaigns 
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need to be strengthened. The relationships linking these two aspects together pertain to which roads 

are highlighted as a target area, why particular crashes are occurring in highlighted locations, and what 

type of safety campaigns may be implemented. In order to solve these questions, a deeper 

understanding of the relationships between alcohol-related crashes and their associated hot spots is 

examined. Using these relationships, safety campaigns may be improved by implementing new 

methodologies of patrolling with the goal of reducing the amount of alcohol-related crashes. 

1.1  BENEFITS OF THIS RESEARCH 

This research allows for a greater understanding of the relationships between alcohol-related crashes 

and the locations in which they occur, as well as examines new methodologies for the implementation 

of safety campaigns. In the past, the overall location of where crashes are occurring has been 

developed. This research delves deeper into the spatial distribution of crashes and identifies how the 

location of these crashes affects safety campaigns implemented in an attempt to reduce the number 

and severity of crashes. The overall goal of this research is to reduce the amount of alcohol-related 

crashes in the state of Ohio by creating a geospatial means to analyze motor vehicle crashes, then 

improving overtime patrols to be implemented in safety campaigns. The geospatial means include the 

examination of spatial relationships along roadway networks, the spatial analysis of crashes 

continuously over progressing time, and an analysis of the effects of geographical distributions. These 

analyses realize important relationships between crashes and their surroundings. The analyses may then 

be used to develop new methods of patrolling, which may aid in reducing the number and severity of 

crashes. 

The overall objective of this research, to reduce the amount of alcohol-related crashes in the state of 

Ohio by creating a geospatial means to analyze motor vehicle crashes, then improving overtime patrols 

to be implemented in safety campaigns, is achieved through six different steps. First, the spatial 

relationship between alcohol crashes and the roadways that they occur on is examined. This identifies a 

more accurate means of analysis and patterns of roadways that affect spatial analyses. This examination 

provides a unique perspective in identifying the link between spatial analyses and the legality behind 

their use in preventing alcohol-related crashes. The second analysis examines the spatial relationship of 

crashes through the progression of time. This spatio-temporal analysis identifies movements of hot 

spots continually throughout time and variances between both single and multi-vehicle alcohol-related 

crashes. This examination is unique in the ability to continually analyze spatial distributions through a 

moving window of time. The third analysis examines the association between alcohol-related crashes 

and the geographical components of population. The relationship of geographies indicates that 

normalizing for population density does not provide any substantial benefit; however, by investigating 

varying crash attributes, the focus of crashes in high population areas is reduced. This examination is 

unique in the identifying the use of various spatial analyses towards targeting crashes and implementing 
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different types of safety campaigns. The fourth analysis begins the development of new methods of 

safety campaigns. The spatial relationships previously developed are further broken down to locating 

statistically significant areas, which define exact areas where officers may be able to patrol. The fifth 

analysis uses a model to create routes for officers to follow which will guide them to the specific areas 

defined in the fourth analysis. This analysis will also compare this new method of patrolling to a 

traditional method of corridor patrolling. The sixth analysis creates a failure probability model that will 

justify the use of the newly developed method of patrolling while potentially helping administrator in 

the decision-making process. While this research identifies results for specific areas within the state of 

Ohio, the ability of the methodologies developed within this research extend beyond those study areas 

and may be applied to a wide variety of regions. 

1.2 ORGANIZATION OF THIS RESEARCH 

The following subsections briefly describe the contents of each chapter of this study. The goals, 

methods, and outcome of each section are summarized below. 

1.2.1  Chapter II: Background Information  

Chapter II discusses the current conditions regarding spatial analyses of motor vehicle crashes. The 

chapter opens with insight into different types of spatial analyses being conducted within research of 

motor vehicle crashes. The review of previous studies is broken down into three different areas, 

including: point-based, segment-based, and zonal-based analyses. This chapter further expands on 

spatial analyses by presenting the ability to express hot spots through the interpolation of spatial 

autocorrelation. 

1.2.2 Chapter III: Comparing the Use of Euclidean and Network Based Distances When 

Calculating Hot Spots for Law Enforcement Patrol. 

This chapter builds upon the background analyses identified in Chapter II. The influence of distance on 

the spatial analysis of crashes is investigated towards the application of hot spots in legally 

implementing alcohol focused safety campaigns. Specifically, relating the use of Euclidean or network 

based distances to the implementation of hot spots for patrolling of alcohol-related crashes. The 

investigation of varying distances is applied to the calculation of both spatial autocorrelation and 

interpolated values. 
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1.2.3 Chapter IV: A Spatio-Temporal Hot Spot Examination of Alcohol-Related Single and 

Multiple Vehicle Crashes. 

Chapter IV builds upon those findings from the previous chapter by using network based distances to 

investigate the spatial variation between single and multiple vehicle crashes where an involved driver 

was intoxicated with alcohol. This spatial variation is examined through a spatio-temporal analysis. 

Within this analysis clusters of crashes are identified throughout time, across both the time of day and 

day of the week. The movement of these clusters is examined for the ability to increase the efficiency of 

safety campaigns. 

1.2.4 Chapter V: Examining the Use of Normalization in Mapping of Alcohol-Related Hot 

Spots. 

While Chapter IV identified the presence of movement in clustered crashes as time progresses, the 

effects of population on the location of clusters has been made a concern. Chapter V explores the 

effects of population density on the location of clusters and the ability to implement safety campaigns in 

the location of hot spots. In order to assess these effects, the normalization of hot spots is investigated. 

The hot spots investigated are determined based on the frequency and societal costs of crashes. The 

location of the resulting hot spots for both normalized and non-normalized spatial autocorrelation is 

compared for their use in educational, enforcement, and engineering campaigns. 

1.2.5 Chapter VI: Using Local Indicators of Spatial Association to Improve Patrols and 

Reduce Alcohol-Related Crashes 

The purpose of this chapter is to locate significant areas for officers to patrol for intoxicated drivers. The 

significant areas are determined from the output of hot spot analyses in three counties in Ohio. The 

output of the hot spots is a series of points that may be broken down into local indicators of spatial 

association that identify a confidence interval for each output of the hot spot map. By using these 

points, officers will have more specific targets, backed up by statistical significance, while patrolling for 

intoxicated drivers. These points are defined by 90%, 95%, and 99% confidence, or no significance. This 

research found that utilizing the 95% confident network locations may be best in guiding officers 

patrolling for intoxicated drivers. 

1.2.6 Chapter VII: Comparison of Traditional Corridor Based Enforcement with Route 

Optimization of Hot Spot Analysis  

The goal of Chapter IV is to compare traditional corridor enforcement practices with the newly proposed 

hot spot route optimization (HSRO). The HSRO method of patrolling optimizes route to each of the 

locations provided in Chapter III. These routes are compared with the traditional method of corridor 
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patrolling to determine the most efficient method of patrolling for intoxicated drivers. Comparing these 

two methods will help to determine if the HSRO method of patrolling emulates traditional methods of 

patrolling. The average amount of alcohol-related crash locations passed per mile and minute are use as 

performance metric for each method of patrolling and compared. Ultimately the HSRO method of 

patrolling is able to pass through more alcohol-related crash locations per mile and time, indicating that 

this method may be the most efficient in patrolling for intoxicated drivers.  

1.2.7 Chapter VIII: Use of Failure Probability Models to Justify New Methods of 

Patrolling 

This chapter uses two failure probability models to further compare the efficiencies between patrolling 

through corridors and the HSRO method of patrolling. Failure probability is used to determine the failure 

of scenarios given a number of variables. The goal of the first model is to determine the most amount of 

consecutive cycles that may be completed by a given fleet size, while the goal of the second model is to 

determine the cost-effectiveness of patrolling and the cost of potential pullovers. These models may be 

beneficial in determining which method of patrolling may be the most efficient to use. These models 

may also be useful to captains in determining the desired fleet size for patrolling for intoxicated drivers 

on a given night.  

1.2.8 Chapter VIII: Conclusion and Recommendations  

This chapter reviews the advancements in spatial analyses pertinent to motor-vehicle crashes examined 

within this research. The application of these advancements is reviewed, as well as the development of 

new methods of patrolling using the spatial analyses. Additionally, this chapter reviews future 

recommendations of the research, including implementation practices and future studies of alcohol-

related crash patterns. These future recommendations build upon the techniques used within this 

research. 
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CHAPTER 2:  BACKGROUND INFORMATION 

The ability to locate where crashes are occurring provides large opportunities to safety officials who aim 

at reducing the number and severity of crashes. The use and support of spatial modeling within DDACTS 

allows the further investigation of spatial modeling to aid in the reduction of crashes. The analysis of 

crashes through DDACTS exploits one option to reduce alcohol-related crashes, by employing safety-

related campaigns in high risk locations. The identification of these high risk locations is paramount to 

the successful implementation of these safety campaigns. Without knowing the ideal location of where 

these crashes are occurring, safety related efforts may either be imposed upon non-pertinent people or 

misused in locations where large amounts of crashes are not realized. In order to obtain a better 

understanding of crashes, their location and attributes are compared to one another. Spatial analyses 

use Tobler’s first law of geography (Tobler, 1970), that “everything is related to everything else, but near 

things are more related than distant things” to achieve this understanding. The spatial analysis of 

crashes allows for the optimal location of implemented safety campaigns to be identified. 

Several methods of mapping may be used in spatial analyses. Kim and Levine (1996) identify three 

different ways to study spatial information, including point, segment, and zonal analyses. While there 

are three different levels in which to investigate crash locations, the spatial analyses methods used 

within each level may often overlap from one to another. One example of this overlap is through the use 

of Moran’s I, Geary’s C, and the Getis-Ord G statistic. These methods, which may be used in either point 

or zonal-based analyses, indicate both global and local levels of clustering. The global indication 

examines spatial autocorrelation over an entire study area. In other words, an indication is determined 

for all crashes as a whole. The local indication examines spatial autocorrelation at each specific location. 

Moran’s I and Geary’s C both investigate features based on their similarity to nearby features. 

Meanwhile, the G statistic investigates features based on the concentration of high or low feature 

values. Boots and Tiefelsdorf (2000) further explain the representation of global Moran’s I as an overall 

indication of whether similar or dissimilar values are located in close proximity to one another. Whereas, 

Anselin (1995) further explains the local Moran’s I as an indication of similarity at each specific point, 

allowing for pockets of crashes to be determined. The global representation of the G statistic is 

explained by Getis and Ord (1992) as an overall measure of, or lack thereof, concentration of points. 

Getis and Ord (1992) similarly explain the local Gi* statistic, where groups of points that have high or 

low spatial association are identifiable. 

2.1 POINT-BASED ANALYSIS 

Point-based map analysis uses the specific locations of crashes, resulting in a series of points on a map. 

The location of the crashes is often determined based on the longitude and latitude of the crash, an 

address at which the crash occurred, or an intersection and an estimated distance from the intersection 
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where the crash occurred. Each individual point identified on a map would thus relate to one individual 

crash. Crashes occurring in the same location would then be identified by one point overlaid by another. 

The point-based analyses allows for differentiation between these crashes that occur in the same 

location.  

The latest and most popular measures of spatial distribution for point-based analyses are calculated 

using Moran’s I and the Gi* statistic, described in the previous paragraph. Other measures of spatial 

distribution, such as the nearest neighbor index, are also available for point-based analyses. The nearest 

neighbor is a global indicator of clustering that indicates if the average distance between neighboring 

features is more or less than the expected distance separating one another. Applying these analyses to 

crashes, the overall location of points, the spatial distribution from this overall location, or the spatial 

distribution from one point to another may then be analyzed. The overall location of crashes and their 

spatial distribution from this location was examined in Hawaii by Levine et al. (1995). This examination 

of crashes in Hawaii identified that clustering was present throughout the entire study area using the 

nearest neighbor index. The spatial distribution was also analyzed from the overall averaged location of 

points using the standard deviational circle and ellipse. Kang et al. (2012) and Wong (1999) used the 

latter measures in addition to the mean center to describe the distribution of crashes.  

While studies have shown that the use of Moran’s I and Gi* are useful in the identification of spatial 

autocorrelation among crashes (Songchitruksa and Zeng, 2010; Truong and Somenahalli, 2011), the 

analysis of spatial distributions of crashes has expanded to investigate crash densities. The use of kernel 

density estimation (KDE) allows for locations that have high occurrences of crashes to be realized, as 

shown through the research of Backalic (2013), Plug et al. (2011), Pulugurtha et al. (2007), and Schneider 

et al. (2001). The combination of using KDE, Moran’s I, and Gi* have allowed others, such as Blazquez 

and Celis (2013), Kuo (2013), Prasannakumar et al. (2011), and Schneider et al. (2004), to compare 

statistical cluster significance to various density values. 

2.2 SEGMENT-BASED ANALYSIS 

While point-based mapping has shown promise in identifying relationships within crash data sets, other 

approaches have used segment-based mapping for the identification of factors relating to crashes. The 

crashes used within segment-based analyses are aggregated to small segments of roadways, and these 

roadway segments are then analyzed for patterns. Segment-based mapping has been employed by 

Imprialou et al. (2014) to identify the roadway segments on which crashes have occurred and to 

determine how the segments may be improved. These types of analysis have allowed roadway 

segments to be identified through the use of frequency of crashes (Loo and Yao, 2013) and the K-

function (Yamada and Thill, 2004). Analyses such as KDE, which were identified and used within point-

based mapping, have also been used in segment-based mapping, as seen in Erdogan et al. (2008). The 

analysis of roadway segments has grown to include the association of segments’ neighbors and 
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additional contributing factors into the final analysis using Bayesian statistics, as seen by Aguero-

Valverde (2013), Aguero-Valverde and Jovanis (2008), El-Basyouny and Sayed (2009), Li et al. (2007), 

Mitra (2009), Vandenbulcke et al. (2014), and Yu and Abdel-Aty (2013). 

2.3 ZONAL-BASED ANALYSIS 

The final type of mapping, as described by Kim and Levine (1996), is zonal-based mapping. This type of 

mapping uses a specific defined area, such as counties, traffic analysis zones (TAZ), as well as census 

block, block group, and tract levels. Zones at each of these levels, which have been created by 

government entities to group the residing population for various purposes, are treated in a manner 

similar to a quadrat analysis (Nicholson, 1998), which uses grid-based zonal boundaries to aggregate 

crashes and test for randomness within the crashes’ dispersal area. The thought is that once these areas 

are defined, state and local agencies may more efficiently allocate the appropriate resources – including 

personnel, money, or educational materials – that are required to reduce the number and severity of 

crashes. The zonal analyses are conducted by aggregating all crashes contained within each zone’s 

boundary, creating a single frequency value for each zone. Each zone is then analyzed based on the 

neighboring zones or the distance from the center of that zone to the center of other zones. Many of 

the analyses used are similar to those used in both the point-based and segment-based mapping. Kim et 

al. (2010) used quadrat analysis to investigate crashes that were aggregated through a 0.1-m2 grid. 

Similarly, Yiannakoulias et al. (2012) aggregated crashes zonally by census tract to identify the relative 

risk associated with each zone. An application where the density of crashes was determined within zonal 

boundaries (Chen et al., 2014) has also been completed, as the use of KDE extends beyond point-based 

mapping. Spatial autocorrelation for zones was investigated by Erdogan (2009), Khan et al. (2008), and 

Khan et al. (2009). Many studies, such as Lee et al. (2014), Loukaitou-Sideris et al. (2007), Pirdavani et al. 

(2012), Scheiner and Holz-Rau (2011), Sukhai and Jones (2013), Treno et al. (2007), and Wang and 

Kockelman (2013), have aggregated crashes zonally in order to use the frequency of crashes to 

investigate the associated factors through the use of regression models. The spatial relationship 

between one zone and its neighboring zones was also conducted through many studies using Bayesian 

statistics, as seen in Aguero-Valverde and Jovanis (2006), Karim et al. (2013), Lee et al. (2014), Ng et al. 

(2002),Pulugurtha et al. (2013), Quddus (2008), Wang et al. (2012), and Xu et al. (2014). 

The studies previously mentioned in latter three paragraphs have contributed greatly to the 

identification of spatial variations in transportation related crashes. These existing methods have proven 

useful in identifying underlying patterns within a set of data points.  

2.4 SPATIAL ANALYSIS SUMMARY 

There are a number of ways these techniques may be applied to the use of safety campaigns. One such 

method is to target specific points or allow law enforcement to patrol areas based on their ability to 
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pass through significantly clustered points. Point-based analyses are useful because it maintains the 

integrity of the existing data, allowing each crash location to be spatially related to the contributing 

results. While this data integrity is important, locations may be missed in the event that a crash did not 

occur in its exact same place during the study period. Zonal-based analyses may remedy this issue in 

that all locations would thus have an attributable level of spatial distribution associated with them. 

While, this allows locations where crashes are likely to occur to be identified, the presence of 

aggregating crashes based on an arbitrary zone allows a bias from the principal investigator to be 

realized. This bias may be minimalized or removed during the use of segment-based analyses; however, 

due to the aggregation of crashes, the spatial distribution is not analyzed at the location in which the 

crash occurred, only a nearby one. The use of aggregation provides information pertaining to crashes 

within a specific area, the difference when locating a crash on one side of the boundary or segment 

versus another may create large differences in the indicated outcome. Even though smoothing 

techniques may be used to reduce this effect, the elimination of aggregation boundaries would allow for 

a smooth transition between all locations, allowing for the spatial aspect of the crash to be weighted 

higher than the boundary that it falls within. 

In an effort to remove the influence of bias or aggregation, the use of KDE and interpolation have 

provided a means to identify locations where safety campaigns may be implemented. These two 

methods allow for a level of clustering to be realized throughout all locations of a study area. The 

location of safety campaigns is thus identified in an area where clustering is statistically significant. This 

may be seen with the use of the Gi* statistic and an interpolator. The result of the Gi* statistic is a z-

score. That z-score is then interpolated and distributed throughout the entire study area. Only those 

locations that are significantly clustered are identified. Safety campaign implementations may then take 

place within the identified area. 
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CHAPTER 3:  COMPARING THE USE OF EUCLIDEAN AND 

NETWORK BASED DISTANCES WHEN CALCULATING HOT SPOTS 

FOR LAW ENFORCEMENT PATROL 

3.1 INTRODUCTION 

In 2012, 30,800 fatal vehicle crashes occurred throughout the United States, which translates to a rate 

of 10.69 fatalities per 100,000 people (NHTSA, 2015). Of the 30,800 fatal crashes, a total of 10,322 

vehicle operators had a blood alcohol concentration (BAC) of 0.08 or greater (NHTSA, 2015). The effects 

of alcohol on drivers have been heavily studied. Connor et al. (2004) identified a strong association 

between those who drink alcohol before driving and crashes with injuries. Peck et al. (2008) investigated 

the relationship between BAC and drivers under the age of 21, identifying a higher relative crash risk 

than predicted for the effect of BAC and age. Evans (1990) found that traffic-related fatalities would be 

reduced by nearly 47% if there were not any alcohol-related crashes.  

Educators, engineers, and law enforcement agencies have attempted to reduce the total number of 

alcohol-related fatalities. Educational efforts may be directed toward a diverse range of drivers, 

spanning from new or existing drivers to those who have been convicted of operating a vehicle while 

intoxicated (OVI). The messages presented to each of these different subgroups of drivers may be 

specifically tailored to the conditions relevant to each operator. The design of roadways may also be 

altered in an effort to make roads safer. Additionally, safety campaigns may be implemented through 

law enforcement in an effort to reduce the number of intoxicated drivers on the roadway. Some of 

these campaigns are in the form of saturation patrols, corridor enforcement, or checkpoints. The 

implementations used by educators, enforcement, and engineers may benefit from research studies 

that disseminate information about hazards to drivers, provide insight into the drivers’ perception of 

altered roadway, or identifying the location in which to implement safety campaigns. 

The identification of locations in which to implement measures such as safety campaigns varies widely. 

The National Highway Traffic Safety Administration (NHTSA) has proposed and implemented the idea of 

Data-Driven Approaches to Crime and Traffic Safety (DDACTS) in an effort to reduce the occurrence of 

crimes, crashes, and traffic violations. This strategy has progressed through an interest in identifying hot 

spot locations and causative variables associated with incidences in selected areas. The identification of 

hot spots varies with the type of analysis employed and may include counts of crashes on roadway 

segments, counts of crashes within a defined grid system, and the use of spatial analysis. The aggregated 

counts of crashes both on roadway segments and within gridding systems may allow for a simple-to-

conduct and easy-to-comprehend examination of alcohol-related crashes. The use of spatial analysis 

allows for an investigation into the spatial distribution of the crashes and their contributing factors. The 

distribution and the variability between contributing crash factors is important in addressing the 
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hazardous issues within each specific area. Spatial analysis, through the identification of hot spots, 

establishes specific areas that may be used for the implementation of enforcement patrols. These hot 

spots provide a means of identifying the location in which to implement strategies for reducing the 

number of crashes and their injury severity. Maistros et al. (2014) described the performance of alcohol-

related safety campaigns such as saturation and corridor patrols that were located using hot spots. 

There are several types of spatial analyses that may be used to identify hot spots of motor vehicle 

crashes. Some examples of commonly used analysis methods for identifying the spatial autocorrelation 

between each crash location rise from the use of kernel density estimation (KDE), Getis-Ord Gi, and 

Moran’s I. KDE has shown its viability in terms of identifying high risk locations in which crashes occur 

(Backalic, 2013; Plug et al., 2011; Pulugurtha et al., 2007; Schneider et al., 2001). The use of the Gi* 

statistic and Moran’s I have also shown exceptional abilities in identifying spatial autocorrelation 

between crashes and their attributable contributing factors (Songchitruska and Zeng, 2010; Truong and 

Somenahalli, 2011; Kuo, 2013). One important aspect of using spatial analysis to determine the location 

of hot spots is for the legal implementation of safety campaigns within the defined areas. The 

combination of using the Gi* statistic and interpolation allows for an unbiased, statistical identification 

of the location of the hot spot. While this unbiased identification is preferred, there is still some 

differentiation between the approaches used by some researchers for conducting a spatial analysis. 

This differentiation in the approach to the analysis may be seen in the calculation of the distances 

separating each crash, which is essential to the calculations included in the spatial analyses. The results 

vary when using a Euclidean versus network-based distance in the calculation of the hot spot. In the use 

of the Euclidean distance, a straight-line calculation from one crash location to another is observed. This 

relationship is often also called “as the crow flies.” The network-based distance, on the other hand, 

follows along the path of existing roadways. In this approach, the calculation follows between two crash 

locations and must follow a pattern that a vehicle may travel. The only exception to this path of travel is 

that the path may not include parking lots or private roads, which a driver of a vehicle is not likely to 

use.  

Euclidean distances have been used in the calculation of spatial autocorrelation when routing law 

enforcement patrol operations (Kuo et al., 2013). Euclidean analyses are often used within the 

development of patrol operations for a number of reasons, including increased flexibility to patrol 

routes, or software/computer capabilities. One argument against the use of Euclidean analyses is the 

idea that an analysis that includes a field or parking lot may be misrepresentative. However, to those 

patrolling the roadways, the use of Euclidean analyses may allow law enforcement officers to broaden 

their search efforts to patrol locations that may otherwise not be indicated within a hot spot.  

Even though Euclidean based calculations are still currently used in spatial analyses, the use of a 

roadway network to constrain spatial analyses is on the rise. Some researchers, such as Young and Park 
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(2014), use this type of analysis in an effort to identify heightened areas of crash occurrence. Even 

though the use of a network distance theoretically seems more beneficial to use, continued research 

and applications in practice still revert to the use of Euclidean distances.  While the use of Euclidian 

distances does provide the abovementioned benefits, the variations in use within applied 

implementations are of the most concern. The important aspect to consider is the way each method 

affects the identification of roadways that law enforcement, aiming to reduce alcohol-related crashes, 

may legally patrol. 

When using hot spot maps in safety campaigns, the main requirement is for the locations of the 

enforcement patrols to withstand scrutiny in court hearings when a driver suspected of OVI is under 

investigation. In cases such as this, the drivers may claim they were illegally targeted. In an effort to 

maintain the legality of a particular traffic stop, the map identifying the location of the traffic stop must 

be accurate. Spatial analyses conducted using both Euclidean and network-based distances require 

accurate identification of the roadways in which law enforcement may patrol. The differing methods 

may produce results with large ramifications concerning the legality of a traffic stop involving a driver 

who is suspected of OVI. This research investigates the variation between each of the two types of 

analysis and compares the resulting roadways identified as hot spots. 

3.2 DATA 

This investigation focuses on alcohol-related crashes occurring in Cuyahoga County, Ohio, from January 

1, 2012, through April 9, 2015. The crash data used in this study were obtained from the crash report 

database maintained by the Ohio Department of Public Safety (ODPS). A total of 3,469 crashes were 

reported within the studied time period and geographic area in which the reporting officer identified the 

crash to be alcohol-related. Of these, a total of 3,365 crashes are able to be geocoded by using the 

longitude and latitude of the reported location of the crash. 

The ODPS database contains all reported vehicle crashes in the state of Ohio and includes the injury 

severity levels of occupants of the vehicles involved in the crash. The range of injury for the highest 

injury severity realized for all parties involved in a geocoded crash in Cuyahoga County in which a driver 

was suspected of OVI may be seen in Table 3.1. 
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Table 3.1. Injury Severity for Geocoded Alcohol-Related Crashes in Cuyahoga County 

Injury Severity Number of Crashes 

Property Damage Only 1900 

Injury 1400 

Fatal 65 

Total 3,365 

Note: Dataset includes alcohol-related crashes that occurred from January 1, 2012, through April 9, 2015. The 
injury severity relates to the highest severity realized for all parties involved in a crash. 

3.3 METHODOLOGY 

The general methodology of calculating the hot spots for both the Euclidean and network-based 

distances is essentially the same. This process includes 1) a weighting of the crash severities, 2) the 

development of spatial weights matrices, 3) the calculation of spatial autocorrelation, and 4) an 

interpolation of the autocorrelation. The difference between the two analysis approaches resides in the 

development of the spatial weights matrices, where distances separating one crash from another are 

calculated using different methods. With the differences in the spatial weights matrices, the resulting 

hot spot locations obtained for both analysis approaches may then be compared. 

3.3.1 Crash Severity Weighting 

This study weighs each of the crashes based on the highest injury severity of all members involved in a 

crash where a driver is suspected of OVI, similar to the process used by Truong and Somenahalli (2011), 

in which an increasing value was associated to higher injury severities. The weighting system used in this 

research places a greater importance on higher severity crashes. These weights are based on the 

societal crash costs, as determined by the American Association of State Highway Transportation 

Officials (AASHTO) in the Highway Safety Manual (AASHTO, 2010). AASHTO divides the societal crashes 

into three general severity categories: fatality (K), injury (A/B/C), and property damage only (O). The 

associated costs in 2001 dollars are $4,008,900 for a fatal crash, $82,600 for a crash with injuries, and 

$7,400 for a crash with property damage only.  



14 

 

3.3.2 Spatial Weighting 

Differences between the Euclidean and network-based analysis approaches first become apparent in the 

development of the spatial weights matrix. The matrix for each type of analysis is developed using a 

binary system dependent upon a threshold distance. This threshold distance is the distance where all 

crashes have at least one neighbor. All crashes that occur within the threshold distance receive a value 

of 1, while all crashes that occur beyond the threshold distance receive a value of 0. As a result of the 

variation in the distance calculation used for each approach, the resulting spatial weights matrices may 

differ. 

3.3.3 Spatial Autocorrelation 

The method of calculating the spatial autocorrelation does not change based on the type of analysis 

being conducted when using either the Euclidean or network-based distances. However, due to the 

differing spatial weights matrices, the resulting values of the spatial autocorrelation may vary from one 

analysis approach to another. The measure of spatial autocorrelation used for this study is the Getis-Ord 

Gi* statistic. This statistic has previously been shown to identify the areas where crash risk is of concern 

(Khan et al., 2008; Sonchitruska and Zeng, 2010; Truong and Somenahalli, 2011; Prasannakumar et al., 

2011; Kuo et al., 2013). The Gi* statistic is calculated using the following equation: 

𝐺𝑖
∗(𝑑) =

∑ 𝑤𝑖𝑗(𝑑)𝑥𝑗−𝑊𝑖
∗𝑥̅𝑗

𝑠[
𝑊𝑖

∗(𝑛−𝑊𝑖
∗)

(𝑛−1)
]

1/2  (3.1)        

where: 

𝑊𝑖
∗ = ∑ 𝑤𝑖𝑗(𝑑)𝑗  (3.2) 

𝑠2 =
∑ 𝑥𝑗

2
𝑗

𝑛
− 𝑥̅2 (3.3) 

where wij(d) is the spatial weights matrix, xj is the cost associated with the injury severity, 𝑥̅ is the 

average of all studied societal costs, and n is the total number of crashes (Prasannakumar et al., 2011). 

The result of the Gi* statistic is a z-score describing the dispersion of crashes based on the weighted 

injury severity and the distance separating each crash from one another. The null hypothesis for this 

statistic is that the spatial distribution of crashes and their severities are randomly distributed. The 

locations that are positive and statistically significant are regarded as clusters of high severity crashes, 

“hot spots”. Meanwhile, the locations that are negative and statistically significant are regarded as 

clusters of low severity crashes, “cold spots”. 
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3.3.4 Interpolation of Spatial Autocorrelation  

Once the spatial autocorrelation of the crashes and severities is known at each crash location, a means 

to patrol each significantly clustered location may be developed. This could be accomplished by either 

having a law enforcement officer drive a specific road or path through each significant cluster or by 

identifying an area in which the officer may travel. By allowing the officer to only focus on patrolling 

points, the legality of stops made at locations that were not spatially investigated may come into 

question. On the other hand, when an area is defined within a hot spot for an officer to patrol, the 

legality of stops is statistically backed. In order to provide a statistically backed area (instead of a list of 

specific points), the value of the spatial autocorrelation must be interpolated throughout the entire 

study area. Inverse distance weighting (IDW) interpolation is used to identify the z-score along all 

sections of roadway. Mehdi et al. (2011) describes IDW as an interpolation method that predicts 

unknown values based on their distance from known values. IDW is calculated through the following 

equation: 

𝑧0 =
∑ 𝑧𝑖

1

𝑑𝑖
𝑘

𝑠
𝑖=1

∑
1

𝑑𝑖
𝑘

𝑠
𝑖=1

 (3.4) 

where, z0  is the estimated value at point 0, zi is the measured value at point i, s is the number of points 

used to estimate the unknown value, di is the distance between points i and 0, and k is the power 

identifying the influence of distance (Ansari and Kale, 2014). The interpolation of Gi* values is calculated 

using both the Euclidean and network-based distances. This allows for the effect of distance 

relationships to also be investigated. 

3.3.5 Comparison 

A comparison between the two analysis approaches is conducted through an examination of the societal 

crash cost of crashes located on high risk roads and the length of roadways identified as high risk. The 

first comparison is completed using the prediction accuracy index (PAI), initially presented by Chainey et 

al. (2008). This index allows for an examination of the accuracy of hot spots (Tompson and Townsley, 

2010), which presents a ratio of the crashes occurring within a hot spot to the size of the hot spot. 

Thakali et al. (2015) updated the PAI by modifying the denominator of the equation to account for the 

length of roadway for the identified hot spots. A further modification to the numerator of the equation 

is conducted through this research, in which the aggregated societal crash cost of crashes is analyzed 

instead of the aggregated number of crashes. The equation used in this research to calculate the PAI 

may be seen in the following equation: 

𝑃𝐴𝐼 =
𝑐

𝐶
×100

𝑙

𝐿
×100

  (3.5) 
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where, c is the societal crash cost of crashes in hot spots, C is the total societal crash cost of all crashes 

within the study area, l is the length of roadways identified as being located in the hot spot, and L is the 

total length of roadways within the entire study area. Thakali et al. (2015) indicates that the mapped hot 

spot that contains a larger PAI is more beneficial. This benefit comes from having a hot spot with a 

higher crash potential identified in a smaller area of concern. This would provide an increase in 

efficiency as the patrolling law enforcement officer(s) would attend to more a concentrated location, 

while not traveling on unnecessary roads.  

Once a comparison of the PAI is completed, an investigation into which factors contributed the greatest 

influence to the resulting PAI values may be conducted. This investigation is conducted through the 

percent difference of both the societal crash cost of crashes located within hot spots and the length of 

roadways identified as hot spots. The percent difference for the societal crash cost would compare the 

total societal crash cost of crashes that occur within the hot spot as determined though each type of 

analysis, both Euclidean and network-based. Similarly, the percent difference for the length of roadway 

would compare the total length of roads included in the hot spot for each analysis approach. 

3.4 RESULTS 

The calculation of spatial weights matrices for the Euclidean and network-based analyses is crucial for 

facilitating a comparison between the two approaches. The threshold distance was calculated so that 

each crash has at least one neighbor, found to be 7,414.7 feet and 16,364.8 feet for Euclidean and 

network-based analysis, respectively. The difference in length resides in the fact that the network-based 

distance is restricted to following along the path of the roadways, while the Euclidean distance is 

permitted to follow a straight-line path from one crash location to another. This may lead to large 

variations in the distance between two points, as one distance my travel through a city block and 

another may be at least twice as long, traveling around the block. The difference in distance 

measurements may expound even further within rural areas, as the distance required to travel around a 

subdivision may be much longer than through a back yard. Since spatial analyses examine the 

distribution of crash locations, any large variations in distance vastly change the results. 

Using the developed spatial weights matrix for each analysis approach, the spatial autocorrelation of the 

crashes and their injury severities was able to be determined through the calculation of the Gi* statistic. 

The significance of clustering for Cuyahoga County, determined by the value of the z-score at each crash 

location for both the Euclidean and network-based distances, is shown in Figure 3.1. 
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Figure 3.1. Comparison of Gi* z-scores obtained by Euclidean and network-based analysis for Cuyahoga County. 

Note: Hot spots represent locations where high injury severity crashes are close in distance to other high severity 
crashes. Cold spots represent locations where low severity crashes are close in distance to other low severity 
crashes. 

The cluster significance shown in Figure 3.1 provides a basis for law enforcement agencies to use in 

focusing their patrol activities. While these points identify locations where incidents are known to have 

occurred and their related risks, it may be difficult to legally back the traffic stops a law enforcement 

officer may make while traveling to and from each identified location. Another option would be to allow 

law enforcement agencies to patrol an area designated by specific boundaries in which a high risk for 

crashes occurs. In an effort to achieve suitable boundaries, interpolating the z-score of each known 

cluster would aid in defining an operable area, which identifies where a similar crash is likely to occur. 

Even though a crash has not occurred at every location within the study area, it is assumed that 

locations may share similar characteristics when they are in close proximity to one another.  

Once the interpolation of the z-scores is completed, a comparison of the two analyses may be made. 

While analyses may include distance measurements obtained via two approaches in the calculation of 

the Gi*, there are also two interpolation methods that may be conducted based on the distances used 

to determine the IDW. Consequently, three different analysis combinations are investigated: 1) 

Euclidean Gi* calculations and Euclidean interpolation (represented as EE), 2) Network-based Gi* 

calculations and Euclidean interpolation (represented as NE), and 3) Network-based Gi* calculations and 

Network-based interpolation (represented as NN). The results for the network-based interpolation used 
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in NN are obtained through the use of SANET (ver. 4.1). The resulting significantly clustered areas may 

be seen in Figure 3.2. 

 

Figure 3.2. Comparison of hot spot areas between Euclidean and network-based analysis. 

Note: Network interpolation completed with the use of SANET ver. 4.1. 

The hot spots resulting from the various combinations of Euclidean and network-based analyses appear 

to be similar, as may be seen in Figure 3.2. However, it is important to determine the exact boundaries 

of the hot spots and whether each spot includes an additional 1, 10, or more roadways. The variation 

between the boundaries identified using the two approaches may present enough of a legal rationale 

for a case against a suspected driver OVI to be dropped due to an inappropriate stop. 
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When comparing the three analysis combinations, it is important to identify which roadways are 

deemed to be high risk in both the Euclidean and network-based roadways. These high risk roadways 

are ones which, when interpolated, contain a crash severity with a cluster significant z-score greater 

than or equal to 1.96, which relates to a 95% level of statistical significance. The roadways in Cuyahoga 

County that were identified to be of high risk based on significant clusters of high severity crashes, from 

the Euclidean, network, and both Euclidean and network-based analyses may be seen in Figure 3.3. 

 

 

Figure 3.3. Identification of hazardous roadways. 

Note: The abbreviations EE, NE, and NN represents the type of distance used within the calculation of the Gi* and 
interpolation. EE indicates Euclidean based Gi* and Euclidean based interpolation. NE indicates network based Gi* 
and Euclidean based interpolation. NN indicates network based Gi* and network based interpolation. 

Network interpolation completed with the use of SANET ver. 4.1.  

From Figure 3.3, it may be seen that these identified roadways are very similar from one analysis 

combination to another. However, small differences appear when looking at the overlap in the resulting 
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locations. It has been determined that when comparing EE to NE, 64.3% of roadways identified by NE 

are also identified by EE; in contrast, only 43.8% of roadways identified by EE are also identified by NE. 

This indicates that only about half of the roadways are similar between EE and NE. By only having 

approximately half of the significant roadways overlapping, there would be a major discrepancy in the 

location of an implemented safety campaign. This discrepancy plays a large role in the legality of such 

safety campaigns, as incorrectly targeting a driver suspected of OVI may be a cause for case dismissal. 

This trend may also be seen when comparing EE to NN; 63.1% of roadways identified by NN are also 

identified by EE, while only 42.2% of roadways identified by EE are also identified by NN. However, the 

overlap between the different types of analyses increases drastically when comparing NE to NN. A total 

of 91.2% of roadways identified by NN are also identified by NE, while 89.7% of roadways identified by 

NE are also identified by NN. The results from the third combination indicate that the roadways 

identified by NE and NN are very similar and cover nearly all of the same roadways. This relationship 

may be seen in Figure 3.3, where the hot spot areas identified by NE or NN cover many of the same 

locations as that of EE. However, when examining the comparison in the reverse order, the area of 

concern in EE includes a larger area that extends beyond that of NE or NN. In other words, the network-

based calculation of the Gi* identifies similar areas as the ones obtained for the Euclidean Gi* analysis; 

meanwhile, the Euclidean Gi* analysis may be unnecessarily large and include roadways that may be 

inappropriately patrolled.  

The relationship between the crashes in the dataset and the identified high-risk crash locations (hot 

spots) was also examined to facilitate a comparison between the three analysis combinations. This 

examination, through an investigation of the PAI, provides a parameter that permits the comparison of 

the two analyses for evaluating crashes and allows the resulting high-risk locations to be identified. The 

total societal crash cost for all geocoded crashes within the study period is $390,278,500. The total 

length of roadways in the study area is 5,419.6 miles. These two values, the total cost and roadway 

length, are compared to the societal crash costs and roadway lengths included in the hot spots to obtain 

the PAI value for each analysis combination. The societal crash costs, roadway lengths, and PAI values 

for each analysis combination are presented in Table 3.2. 
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Table 3.2. PAI comparison. 

Analysis 
Societal Crash Cost of 

Crashes in High Risk Area 
Length of Roadway 

Identified as High Risk 
PAI 

Value 

EE $24,996,400  230.1 miles 1.51 

NE $39,461,900  156.6 miles 3.50 

NN $39,386,700  154.0 miles 3.55 

Note: The abbreviations EE, NE, and NN represents the type of distance used within the calculation of the Gi* and 
interpolation. EE indicates Euclidean based Gi* and Euclidean based interpolation. NE indicates network based Gi* 
and Euclidean based interpolation. NN indicates network based Gi* and network based interpolation. 

The difference between the PAI values obtained for the Euclidean and network-based analyses may be 

seen in Table 3.2. The analyses that use a network-based Gi* have larger PAI values (3.50 and 3.55) as 

opposed to the value where the Gi* was calculated using a Euclidian approach (1.51), indicating the 

ability of the network-based analysis to identify a more highly concentrated societal crash cost than the 

Euclidean analysis. The increased concentration of high severity crashes allows for a larger impact to be 

realized when using the same law enforcement resources to cover each area, as more locations that 

contribute to the high severity crashes will be patrolled. 

The percent difference in the societal costs is shown in Table 3.3. 

Table 3.3. Percent difference in societal crash costs. 

  NE NN 

EE 44.88% 44.70% 

NE  0.19% 

Note: The abbreviations EE, NE, and NN represents the type of distance used within the calculation of the Gi* and 
interpolation. EE indicates Euclidean based Gi* and Euclidean based interpolation. NE indicates network based Gi* 
and Euclidean based interpolation. NN indicates network based Gi* and network based interpolation. 

From Table 3.3 it may be seen that the largest variation between each of the analyses is the use of 

Euclidean based distances in the calculation of the Gi*. The use of Euclidean or network-based distances 
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within the interpolation of the hot spots has a very minimal impact. The difference in the societal crash 

costs for the crashes when the Gi* calculation in the analysis is calculated using a network-based 

distance rather than a Euclidean distance is approximately $14,400,000. This indicates that in an effort 

to have the largest economic impact in crash reduction, using hot spots based on network based spatial 

autocorrelation is necessary.  

In a similar fashion to those differences described for the societal crash costs, the percent difference for 

each of the three types of analyses may be seen in Table 3.4. 

Table 3.4. Percent difference in length of roadway. 

  NE NN 

EE 38.01% 39.62% 

NE  1.67% 

Note: The abbreviations EE, NE, and NN represents the type of distance used within the calculation of the Gi* and 
interpolation. EE indicates Euclidean based Gi* and Euclidean based interpolation. NE indicates network based Gi* 
and Euclidean based interpolation. NN indicates network based Gi* and network based interpolation. 

From Table 3.4, it may again be seen that the largest variation between each of the analyses is the use 

of Euclidean distances in the calculation of the Gi*. The difference in the length of roadway between the 

analyses in which the Gi* calculation is either Euclidean or network-based is 76 miles. This indicates that 

using the Euclidean based spatial autocorrelation includes much more roadways than the network 

counterparts and would allow law enforcement to more flexibility in the areas that they patrol.  

The use of Euclidean or network-based distances within the interpolation of the hot spots again has a 

very minimal impact. From examining the difference in percentages for both the societal crash cost and 

the length of roadway, it may be seen that there is a large difference within the length of roadway with 

respect to the societal crash costs. This difference is a major contributor to the variance in the PAI value 

obtained from the two analyses. The analysis containing the larger PAI value is the one that would be 

most beneficial for implementation. This would allow law enforcement agencies to use the least amount 

of resources (funds, manpower, etc.) to realize the highest economic impact (societal cost savings).  

3.5 CONCLUSIONS 

Hot spots provide a great opportunity to identify problem locations. The ability to accurately locate hot 

spots is pivotal in the use of such maps for focusing OVI enforcement patrols. The maps for developing 
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patrol areas must be legally sound, and the legality of the maps comes from appropriately identifying 

roads in which to patrol. A large opposition to a traffic violation could be that the driver was targeted on 

a road that was inaccurately identified as hazardous. The appropriate roads to patrol are those that 

significantly contribute to hazardous conditions. Through statistically identifying a risk associated with 

roadways, bias may be removed from the development of patrol routes.  

While advances have been made to identify hot spots for vehicle crashes, a discrepancy has been noted 

between the approaches used for the calculation of distances separating crashes. Previous research 

efforts to identify these hot spots have used two different approaches: using either Euclidean distances 

or using network-based distances. A Euclidean analysis examines the spatial distribution of crashes in a 

straight line distance from one crash to another, irrespective of the presence of buildings, water, fields, 

or other features. In contrast, a network-based analysis examines the spatial distribution of crashes 

along the path of roadways. In the latter approach, the distance separating one crash from another may 

only be calculated over a path that vehicles are capable of traveling. 

Because both analysis approaches are currently in use and are important within the identification of 

high-risk areas for public safety campaigns, an investigation comparing the Euclidean analysis versus a 

network-based analysis was conducted. This comparison examined the relationship of vehicle crashes 

and identified high-risk roadways using each approach. The results indicate that using network-based 

distances in the calculation of spatial autocorrelation will produce a higher PAI than a spatial 

autocorrelation employing Euclidean distances. This signifies a greater societal crash cost per mile for 

high-risk roads, which would aid in more efficiently and accurately identifying hot spots for law 

enforcement purposes. The results of the comparisons between selected combinations of analysis 

approaches indicate that the NE and NN analyses return very similar results. However, the results for 

the NE and NN analyses differ greatly from the EE combination, where a Euclidean distance is used to 

calculate the Gi* spatial autocorrelation. These relationships are indicated by the NE and NN analyses 

containing much larger societal crash costs while having the hot spots contained within a much smaller 

roadway length. Law enforcement would benefit from using either the NE or NN rather than EE 

combination, as these analyses would result in increased deployment efficiency for patrol efforts. From 

a standpoint of the legality of OVI stops, the network-based analysis provides a more compact area that 

does not unnecessarily identify additional roadways to be patrolled. The removal of unnecessary 

roadways reduces the potential for a traffic stop to be challenged due to targeting a driver on a roadway 

that may not be hazardous. Having an analysis that is more legally sound will reduce the ability of a 

suspected driver OVI to claim that they were illegally targeted. Additionally, identifying hot spots that 

require fewer roads to be patrolled while still targeting areas with high societal crash costs may 

effectively increase the efficiency of law enforcement efforts. 

Overall, the effect of using network distance over Euclidean distances in the interpolation of crash 

spatial autocorrelation is minimal. While the network-based distances provide slightly better results, 
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those analysts who either lack access to appropriate software or have computers with limited 

processing capacity may be more suited to interpolate hot spots using Euclidean distances, which are 

more readily obtained. However, the same is not the case for the calculation of the Gi* statistic, in 

which large differences are realized, and the use network-based distances is able to identify high-risk 

areas more effectively. 
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CHAPTER 4:  A SPATIO-TEMPORAL HOT SPOT EXAMINATION OF 

ALCOHOL-RELATED SINGLE AND MULTIPLE VEHICLE CRASHES 

4.1 INTRODUCTION 

In 2012, there were 10,322 people killed in crashes throughout the United States where a vehicle 

operator had a blood alcohol concentration (BAC) of 0.08% or greater (NHTSA, 2015), accounting for 31 

percent of all traffic related fatalities. This trend has continued at the same rate for the 15-year span 

between 1997 and 2012. The influence of alcohol on decision making and on the maneuvering skills of a 

driver have been well documented and researched, as indicated through studies by Holloway (1995), 

Mitchell (1985), and Ogden and Moskowitz (2004). The implications of alcohol extend across various 

types of motor vehicles, from motorcyclists doubling their chance of a fatality (Schneider and 

Savolainen, 2011) to the drivers of passenger vehicles being involved in higher severity crashes (Zhu and 

Srinivasan, 2011). 

Many tactics are being applied to reduce the number of alcohol-related crashes. These tactics may range 

from informational outreach programs presented by educators to presence related target enforcement 

implemented by law enforcement officers. Educational programs allow for drivers to realize the impacts 

their actions will have upon themselves and other motorists. These programs may reflect upon the 

relative risk associated with increased alcohol consumption (Zador, 1991) or the increased likelihood of 

injuries and death due to alcohol use (Hingson and Winter, 2003). The safety campaign enacted by law 

enforcement aim is to stop an intoxicated driver prior to a crash occurring. The performance of two 

tools used within these safety campaigns, such as saturation patrol and corridor patrol, has been 

examined by Maistros et al. (2014). The outcome of enforcement campaigns rely on the locations where 

the campaigns are implemented. 

Spatial analyses are used in the determination of locations in which there are high alcohol-related crash 

rates. The identified locations may then be ideal for the implementation of target enforcement. The 

spatial analyses often investigate crashes based on multiple years of data combined together. The 

locations of interest are then determined purely on the spatial aspect of the crashes. Meliker et al. 

(2004) analyzed a little over two years of crash locations to spatial analysis to identify the presence of 

clustering in alcohol-related crashes. Meanwhile, Huang et al. (2010) examined five years of data, linking 

spatial autocorrelation to socioeconomic factors such as age and income. The identification of spatial 

patterns provides a location that may be targeted towards reducing crashes and injury severity; 

however, the optimal time to target these areas is unknown. 

 While the results of spatial investigations are very important and beneficial, there may be trends that 

go unnoticed due to changes in temporal periods. Temporal changes in spatial patterns of alcohol-
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related crashes are very important to investigate, as the presence of events or holidays may have an 

influence on drinking-driver occurrence. Farmer and Williams (2005) examined average deaths per day 

and average deaths per hour in order to identify high death rates and alcohol involvement on holidays 

such as Independence Day and New Year’s Day. While dates such as this are useful, it is difficult to know 

the location in which such crashes occur. 

The next step is to consider the spatial-temporal realm, which combines the aspects of both the spatial 

and temporal analyses together. Spatio-temporal analyses have been categorized into three different 

types, including map animation, isosurfaces, and comaps (Brunsdon et al., 2007; Plug et al., 2011). 

Benefits and drawbacks for each of these methods have been described by Plug et al. (2011). The 

benefits include map animation’s use of clear visualizations, isosurface’s examination in three-

dimensions, and comap’s display of consecutive maps. The drawbacks from using these methods include 

map animation’s need to be replayed multiple times for understanding and isosurface’s computational 

requirements. Prasannakumar et al. (2011) used a basic version of comaps, breaking the temporal time 

span into two different groups, monsoon season and non-monsoon season. Li et al. (2007) dove deeper 

into the use of comaps by comparing morning versus evening peak hours of travel and weekday versus 

Friday, Saturday, and Sunday.  

This research compares the movement of hot spots by examining isosurfaces created from the Getis-Ord 

Gi* statistic. The goal of this research is to identify the variation between single vehicle alcohol-related 

crashes and multiple vehicle alcohol-related crashes. The use of the Gi* statistic has shown to be a 

useful way to determine locations of clustered crashes (Getis and Ord, 1992; Khan et al., 2008; Kuo et 

al., 2013; Prasannakumar et al., 2011; Songchitruska and Zeng, 2010; Truong and Somenahalli, 2011). 

The application of the moving timeframe to the Gi* statistic allows for crashes to be identified as 

spatially relevant as long as they occur during a similar time period. The result of this research provides 

a further understanding of alcohol-related crashes both in the relationships between single and multiple 

vehicles and how crash patters change over time. By identifying the movements of crash patterns, shifts 

in tactics to reduce the number and severity of alcohol-related crashes may occur. These shifts would 

move the target location of implementations such as saturation or corridor patrols as clusters of crashes 

appear and disappear throughout the course of time. If these shifts did not occur, a target location may 

continually be used after a cluster disappears or at inappropriate times. 

4.2 DATA 

This study analyzes crash records from the OH-1 crash reports, maintained by the Ohio Department of 

Public Safety, dating from January 1, 2012, through April 9, 2015. Specifically, alcohol-related crashes 

are investigated within Cuyahoga County, which contains one of the largest numbers of alcohol-related 

crashes from counties within the state and annually records over 1,000 alcohol-related crashes per year. 

These crashes were then subdivided into single vehicle and multiple vehicle data sets, which related to a 
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total of 1,432 and 1,933 crashes, respectively. Single and multi-vehicle crashes have routinely been 

identified as being related to different crash mechanisms (Ivan et al., 1999; Qin et al., 2004; Geedipally 

and Lord, 2010). Therefore, the examination of these two types of crashes provides great insight into 

crashes that may exhibit different characteristics spatio-temporally. These studied crashes are further 

described in the following table. 

Table 4.1. Descriptive Statistics of Alcohol-Related Crashes in Cuyahoga County, Ohio. 

 Single  Multiple 

 Count Percent  Count Percent 

Total Crashes           

 1432   1933  

Time of Day           

5:00AM-12:00PM 122 9%  168 9% 

12:00PM-5:00PM 109 8%  164 8% 

5:00PM-11:00PM 463 32%  627 32% 

11:00PM-5:00AM 738 52%  974 50% 

Day of Week           

Sunday 208 15%  236 12% 

Monday 129 9%  198 10% 

Tuesday 133 9%  189 10% 

Wednesday 168 12%  214 11% 
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Thursday 164 11%  265 14% 

Friday 292 20%  425 22% 

Saturday 338 24%  406 21% 

Injury Severity           

Property Damage 
Only 815 57%  1085 56% 

Injury 584 41%  816 42% 

Fatal Injury 33 2%  32 2% 

Road Contour           

Straight Level 935 65%  1591 82% 

Straight Grade 143 10%  209 11% 

Curve Level 213 15%  78 4% 

Curve Grade 136 9%  46 2% 

Unknown 5 0%  9 0% 

Speed Related           

Yes 579 40%  522 27% 

No 853 60%  1411 73% 

Note: For the crashes by day of week, those crashes that occur prior to 5:00 am are attributed to the previous day’s 
count. 
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Similarities and differences between single and multi-vehicle alcohol-related crashes may be seen in 

Table 4.1. The time of day and injury severity is very similar, down to within about 1 percent of each 

other. Even the difference based on day of the week between the two groups of crashes has very similar 

timelines. Differences may then be seen based on the contour of the road or whether the crash was 

speed related. Single vehicle alcohol-related crashes have a higher occurrence of being located on 

curved roadways and being speed related than their multi-vehicle counterparts. The differences in the 

road contour and use excessive use of speed indicate that there may be variation in the location of 

where these crashes are occurring.  

Through an examination of the temporal spectrum of Table 4.1, it may unsurprisingly be seen that at 

least half of the crashes occur between in the late night hours, between 11:00 pm and 5:00 am. Those 

people who are drinking alcohol and operating a vehicle at this time are usually doing so as a 

continuation of activities from the previous night. To account for those people who may have begun 

drinking from the night before, pre-midnight, those crashes that occur prior to 5:00 am were attributed 

to the previous day. For example, a person goes out to a bar on a Saturday night and leaves when the 

bar closes and crashes his or her vehicle on Sunday morning. Within this example situation, the crash 

would be attributed to Saturday. This plays a large role into the identification of crash occurrence by the 

day of the week. From Table 4.1, it may be seen that as the days progress through the week, a peak 

number of crashes occur at the end of the week, with at least 40 percent of the crashes represented on 

Friday and Saturday. These temporal trends follow common thoughts that alcohol-related crashes occur 

at night and on the weekend. 

In order to analyze the crashes based on a temporal aspect of the spatio-temporal analysis, the crash 

data was reorganized based on two different time scales, time of day and day of week. All crashes from 

the three years of data were then condensed into one complete cycle (either twenty-four hours or 

seven days) on both time scales (time of day or day of week). In order to identify clusters that may 

appear at either end of a cycle, the crashes at the beginning of the cycle were repeated at the end of 

one complete time period. For example, after all of the crashes were condensed into a single 24-hour 

time period, the first two hours of crashes were repeated onto the following days’ time. In total, the 

analysis then covers 26 hours and allows for clustering to be identified at the beginning and end of the 

day. The use of the first two hours again as the last two hours allows, for example, a crash at 12:30 am 

to be related to ones that occur at both 11:30 pm and 1:30 am.  

4.3 METHODOLOGY 

This research examines the spatio-temporal distribution of single and multi-vehicle alcohol-related 

crashes. The spatial patterns, while important, only paint one part of an overall picture. Analyzing 

crashes purely on a spatial analysis only gives an indication of where crashes are occurring if they were 
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to occur at the same time. The idea of examining crashes solely on an individual basis misses some key 

relationships that have been exposed through temporal examination.  

As described within the data section, the commonly believed temporal pattern is that alcohol-related 

crashes occur at night and during the weekend. While this study investigates the influence of temporal 

components to alcohol-related crashes, the objective of this study is not to reaffirm this belief. The 

objective is to identify the movement of clustered crashes as time progresses throughout the day or 

week. While many crashes may occur at these known times, there may be clusters of high severity 

crashes that occur in a wide variety of locations throughout the day or week. The identification of these 

multiple locations and their shift in movement throughout time is the objective of this research. It would 

be inappropriate to maintain a target location at one site throughout an entire day or week, as the 

pattern would be likely to move throughout the county. 

The location of clusters throughout time is identified by examining the spatial autocorrelation of crashes 

as time progresses. The examination of spatial autocorrelation is identified through the use of the Getis-

Ord Gi* statistic. The ability to identify the spatial autocorrelation as time progresses is accomplished by 

implementing a moving timeframe that determines which crashes are neighbors with one another. 

Those crashes that are considered to be neighbors occur within a specified time period and distance 

from one another. The determination of the time period and distance are further explained in the 

spatial weights matrix section. As time continues, crashes are either included or excluded from spatial 

autocorrelation analysis. Multiple iterations of spatial autocorrelation are examined through this use of 

the moving timeframe. 

The spatial analysis and the spatio-temporal analysis are conducted in a very similar manner. The only 

difference is that the temporal components are removed for the spatial analysis. This temporal 

component is present within the spatial weights matrix and the cluster grouping analysis. In order to aid 

in the identification of spatial distribution within the spatial analysis, the significance of the clustering 

values is interpolated using inverse distance weighting (IDW). All distances that are used within the 

calculation of these spatial and spatio-temporal analyses are network based distances that follow along 

the path of the roadway system. An in-depth explanation of the processes used within the spatial and 

spatio-temporal analyses is described in the remainder of this chapter. 
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4.3.1 Crash Weighting 

The spatial autocorrelation between one crash and another is determined based on the injury severity 

of the crash, similar to that conducted by Truong and Somenahalli (2011). Within this research, the 

highest injury severity of all parties involved in each crash is used as the record’s overall weight. The 

recorded injury severities pertain to three levels of severity: fatal injury (K), injury (A/B/C), and property 

damage only (O). These injury severity levels then correlate directly to the societal cost of crashes 

identified in the Highway Safety Manual (AASHTO, 2010). These crash cost guidelines attribute a higher 

weight to crashes that contain higher injury severities.  

4.3.2 Spatial Weights Matrix  

Within both the spatial and spatio-temporal analyses, the spatial weights matrix designates which 

crashes are deemed as neighbors with one another based on the distance of separation of two given 

crashes. A binary system is used in the creation of the matrix to identify which crashes are neighbors 

with one another. Those crashes that are neighbors receive a value of 1; those crashes that are not 

neighbors receive a value of 0. Through the spatial analysis, all crashes that are within the threshold 

distance are deemed to be neighbors with one another. This differs from the spatio-temporal analysis, 

which also takes a moving window timeframe into account. Not only do the crashes need to be within 

the threshold distance, but they must also occur within one unit of time either before or after a crash to 

be considered a neighbor. The unit of time examined within this research is either 1 hour or 1 day 

depending on the investigation completed throughout the results. 

The threshold distance is calculated along the path of the roadway and is determined based on the 

ability of crashes to have at least one neighboring crash. Such a distance may be overestimated during a 

time when crashes are less frequent and underestimated when crashes are more frequent. In order to 

determine an adequate threshold, the distance required for each crash to have one neighbor is 

calculated. This returned a total of 1,432 distances for single vehicle crashes and 1,933 distances for 

multi-vehicle crashes. The average of these values, for each the single and multi-vehicle crashes, is used 

as the threshold distance. This average is calculated to remove over- or underestimation. 

4.3.3 Cluster Identification 

The cluster identification determines the spatial autocorrelation among crashes based on the 

comprehensive cost of each injury severity level and the spatial weights matrix. The spatial 

autocorrelation is calculated using the Getis-Ord Gi*. The calculation of the Gi* statistic may be seen in 

the following equations: 
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In Equations 4.1 and 4.2, wij(d) is the spatial weight matrix consisting of binary weights with a value of 1 

assigned to all locations within distance d, xj is the value of the comprehensive cost based on the crash 

injury severity, 𝑥̅ is the average cost of all crashes, and n is the total number of crashes (Prasannakumar 

et al., 2011). 

The Gi* statistic identifies the level of dispersion among crashes based on the weighted injury severity 

level. The result of this statistic is a z-score indicating the dispersion at each crash location. The z-score 

relates to the null hypothesis that all of the crashes are randomly distributed. Z-scores that are positive 

and statistically significant represent locations where high injury severity weights are clustered together. 

Those locations that are negative and statistically significant represent locations where low injury 

severity weights are clustered together. All other locations that are not statistically significant are 

considered to be randomly distributed. 

4.3.4 Spatial-Temporal Cluster Groupings 

Cluster locations that are deemed to be statistically significant through the calculation of the Gi* are 

then selected to determine if there is grouping present within both the spatial and temporal 

components. The process of identifying groupings of significantly clustered crashes begins by analyzing 

only those crashes that are considered to be significantly clustered, based on their z-score. The clusters 

with a z-score of 1.96 or greater, which relates to a 95% level of significance, are deemed to be 

significantly clustered. In order to accurately group all of the significantly clustered crashes, the k-means 

clustering algorithm was implemented, as seen in Anderson (2009), Oltedal and Rundmo (2007), 

Vlahogianni et al. (2010), and Xu et al. (2012), which has the ability to specify within what group each 

crash should be contained. Golob and Recker (2004) describe the k-means process as one that minimizes 

the variability of crash attributes within a cluster while at the same time maximizing the variability 

between different clusters of crashes. The crash attribute used to divide the crashes into multiple 

groups is the time/date in which the crash occurred. 
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4.3.5 Hot Spot Interpolation 

Once the spatial autocorrelation has been determined at each crash location, the level of clustering at 

all points along the roadway is able to be identified. This is accomplished by interpolating the z-score 

throughout the entire roadway network. By identifying the z-score at all locations, a smooth transition 

between significantly clustered and non-clustered locations is determinable. Only those locations that 

are significantly clustered may then be used as areas in which law enforcement may patrol for alcohol 

enforcement. 

The interpolation of the z-scores is accomplished using inverse distance weighting (IDW). The ability of 

IDW to determine unknown values at all locations based on the separation distance from known values 

is described by Mehdi et al. (2011). The unknown z-scores are calculated from IDW through the 

following equation: 

𝑧0 =
∑ 𝑧𝑖

1

𝑑𝑖
𝑘

𝑠
𝑖=1

∑
1

𝑑𝑖
𝑘

𝑠
𝑖=1

 (4.4) 

where, z0  is the z-score being estimated at point 0, zi is the known z-score value at point i, s is the total 

number of crash locations used to estimate the unknown z-score, di is the distance separating point i 

from point 0, and k identifies the level of influence based distance between points (Ansari and Kale, 

2014). 

4.4 RESULTS 

The results of this study examine hot spots determined through both spatial and spatio-temporal 

analyses. The results of these two types of analyses are also compared to temporal descriptive statistics, 

identified in the data section. 

4.4.1 Spatial Analysis  

The spatial distribution considered in this research is identified from the Gi* statistic for both single and 

multi-vehicle crashes. These Gi* z-scores were interpolated in an effort to show the clustering 

relationship throughout all roadways within the study area and not specific crash locations. The IDW 

interpolation was conducted along the roadway network using SANET (ver. 4.1), identifies the cluster 

significance of all crashes. These interpolated values may be seen in the following figure.  

Note: Network interpolation completed with the use of SANET ver. 4.1. 
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Figure 4.1. Hot Spots of Alcohol-Related Crashes. 

There are several locations within Figure 4.1 where significant clusters of high severity crashes occur. 

These significant clusters are identified when the z-score is greater than or equal to 1.96, which 

correlates to a 95% level of significance. The positively significant clusters related to those clusters that 

contain high severity crashes in close proximity to one another. Negatively significant crashes show 

locations where low severity crashes are clustered in close proximity to one another; however, there are 

no negatively significant clusters present with either type of crash. The highly clustered areas occur, for 

both the single and multi-vehicle crashes, around the city of Cleveland and several other smaller areas 

along the outer perimeter of the county. The significant areas for both types of data are identified at 

similar locations, with minor differences in the region covered for each type of crash. The differences in 

these locations bring to the forefront the basic idea that single and multi-vehicle crashes do not occur at 

exactly the same place. This requires each type of cluster to have a campaign tailored to the type of 

crash by which it is analyzed. For instance, single vehicle clusters may need more of a focus on those 

drivers speeding around curved sections of roadway. The pure spatial analysis provides a great general 

idea of where safety implementations may originate. However, there is no sense on when would be the 

optimal time to provide these implementations, as a reference to any temporal aspect is not present for 

this purely spatial investigation. For instance, it is unknown whether 2:00 am, 10:00 pm, or another 

interval is the optimal time to implement a safety campaign in a specific location. Without this 

consideration of time, clusters of crashes may or may not be present at an identified location. 
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4.4.2 Spatio-Temporal Analysis 

While the spatial analysis provides an idea of the spatial distribution and the temporal analysis provides 

insight into when crashes are occurring, neither of these analyses overlap and tell a complete story. For 

example, it may be known that a specific area contains clustered crashes, as identified through spatial 

analysis. Additionally, the time of day or day of week when most crashes occur may be known. However, 

it is not known whether those clusters identified through the spatial analysis will be present at the time 

the temporal analysis designates. It would not be beneficial to assume that crashes are always clustered 

in the same location, set up a safety campaign at that location, and not have a cluster occur. Therefore, 

the ability to merge the two capabilities into a single analysis is necessary. Within the spatio-temporal 

analysis, the crashes are analyzed not only based on their spatial distribution but also on the time at 

which they occurred. This allows crashes that occur at a similar time frame to be considered as 

clustered. Crashes that occur in a similar location but outside of this timeframe may then not necessarily 

register a cluster at the same location but at a different time. The spatio-temporal analysis allows for an 

examination of both the distribution of crashes and a temporal aspect to be investigated together. 

The result of the spatio temporal analysis is a four-dimensional map. These four dimensions are 

longitude, latitude, time, and z-score. There are a couple different options to comprehend the results of 

the analysis. First, to make the multi-dimensional map easier to understand, only significant clusters, 

with a z-score greater than or equal to 1.96, are shown. This reduces the map to three-dimensions and 

allows for the identification of when and where clusters are occurring. Different trends in the clustering 

of crashes may also be noticed, such as: movements through the progression of time, groupings of 

clusters, or temporal or spatial gaps. In order to better quantify these movements and groupings of 

clusters, the k-means algorithm is used. The use of this algorithm removes arbitrary grouping of clusters 

by the analyst. The z-scores within each group may then be interpolated along roadways to identify the 

locations where law enforcement may patrol while implementing safety campaigns. Additionally, with 

hot spot maps created for each grouped time period, multiple maps may be compared to one another. 

This analysis for single and multi-vehicle alcohol-related crashes by time of day may be seen in the 

following figure.  
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Figure 4.2. Spatio-Temporal Analysis of Alcohol-Related Crashes in Cuyahoga County by Time of Day. 

Note: Network interpolation completed with the use of SANET ver. 4.1. The hot spot maps of the time groups (1-4) 
relate to the grouped clusters shown in the Significant Spatio-Temporal Clusters map. 

In Figure 4.2, both spatio-temporal clusters and spatio-temporal hot spot maps, based on k-means 

groupings, may be seen. The multi-dimensional plots of clustered crashes depict both the location and 

time throughout the day in which the clusters occur. The spatial location is spread out in relation to 

where the correlating crashes occurred within the county. The temporal depiction is identified as those 

crashes closest to the surface of the county (depicted in Figure 4.2) are at the beginning of the day, 

12:00 am, and those farther away from the surface are later in the day, 11:59 pm. The groupings of 

clusters and their associated time spans within each Time Group is not user specified. It is calculated, 



38 

 

however, using the k-means clustering algorithm for both the single and multi-vehicle crashes. The 

timeframe relating to each time group of clusters may be seen in the following table. 

Table 4.2. Time Groupings for Clusters by Time of Day. 

Grouped 
Cluster 

Single Vehicle Multi-Vehicle 
Combined Timeframe 

Time Group 1 12:00 am – 3:52 am 12:00 am – 1:59 am 12:00 am – 4:00 am 

Time Group 2 4:15 am – 8:36 am 4:55 am – 6:30 am 4:15 am – 8:45 am 

Time Group 3 4:05 pm – 8:37 pm 3:14 pm – 5:59 pm 3:00 pm – 8:45 pm 

Time Group 4 10:08 pm – 11:46 pm 10:04 pm – 11:43 pm 10:00 pm – 12:00 am 

Note: Time groups for the single and multi-vehicle clusters are determined through the use of the k-means 
clustering algorithm. 

The k-means clustering separates the clusters into four separate groups. The time for the first and last 

cluster included in each group may be seen in Table 4.2. These time groups do not overlap for 

consecutive groups for both the single and multi-vehicle clusters. Therefore, a combined timeframe was 

created that encompasses both the single and multi-vehicle crashes for comparison. The closest 15-

minute interval that encompasses both the single and multi-vehicle crashes within each time group was 

used for ease of understanding. 

Significant clusters of high severity crashes seen early in the day for both the single and multi-vehicle 

crashes in Figure 4.2, are located in a similar area as the significant hot spots found in Figure 4.1. While 

this may lead one to think that an overall spatial analysis is sufficient, the locations of significantly 

clustered crashes for the remaining times of the day differ. As time progresses, there is then a lack of 

crash clustering in the same location, as identified in Figure 4.1, for the remainder of the day. Specifically 

for the single vehicle crashes, clusters may be seen towards the southeastern portion of the county. As 

time continues through the day, the clusters move towards the north-central portion of the county and 

move towards the western side of the county at the end of the day. For multi-vehicle crashes, clusters 

begin in the early hours in the north-central portion of the county. As the day progresses, these clusters 

then spread out in all directions towards the edges of the county. 

Not only are the individual movements of hot spots important to determine for either the single or 

multi-vehicle crashes, it is imperative to identify their interaction with each other. The location of 
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statistically significant clusters of single and multi-vehicle crashes, along with the portions of significant 

roadways that overlap, may be seen in the following figure. 

Figure 4.3. Comparison of Single and Multi-Vehicle Hot Spots by Time of Day. 

Note: Network interpolation completed with the use of SANET ver. 4.1. 

From Figure 4.3, it may be seen that the location of significant clusters for both the single and multi-

vehicle crashes are fairly separate. Some larger areas of overlap may be seen in Time Groups 2 and 3, 

and extremely small amounts of overlap are identified in Time Groups 1 and 4. The lack of overlapping 

significantly clustered roadways further contributes to the notion that single and multi-vehicle crashes 

occur due to differing circumstances. Changes in the specific location of significant clusters may be seen 

between Times Groups 1 and 2. In Time Group 1, significant clusters of multi-vehicle crashes are seen to 

be located in the north central portion of the county. This differs from the significantly clustered single 

vehicle crashes located towards the southeastern portion of the county. When progressing to Time 

Group 2, the significantly clustered multi-vehicle crashes begin shifting away from their original location 

and significant clusters of single vehicle crashes then appear. These shifts between clusters of single and 

multi-vehicle crashes may then rise from a reduction of vehicle on the roadway. In Time Group 1, when 

more vehicles are present, clusters of multi-vehicle crashes may be seen. In Time Group 2 there is a 

decrease in the number of vehicles, which in turn shifts the statistically significant multi-vehicle clusters 

to the more predominate statistically significant single vehicle crash clusters. The shifts in clusters 

between single and multi-vehicle crashes imply that if a law enforcement tactic were to be used within 

the north-central location. The campaign in this area would have to switch from targeting multi-vehicle 

crashes to targeting single vehicle crashes. Very few to no significant clusters appear to be located in the 

same area throughout the entire day. This further identifies the need for law enforcement to alter the 

location of safety campaigns to adjust to spatio-temporal patterns. 
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While the analysis of the time of day provides a description of when and where clusters of crashes are 

occurring throughout the day, it is still necessary to ascertain an idea of which day in the week the 

crashes occur. As commonly thought, and seen from the temporal portion of the descriptive statistics in 

Table 4.1, the ideal times to target alcohol intoxicated drivers is on Thursday, Friday, and Saturday. 

However, without identifying clusters of crashes throughout the week, the accuracy of this spatio-

temporal trend may be unknown. To resolve this lingering question, a plot of the spatio-temporal 

clustering, depicted in the same manner as Figure 4.2, for both single and multi-vehicle crashes may be 

seen in the following figure. 
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Figure 4.4. Spatio-Temporal Analysis of Alcohol-Related Crashes by Day of Week. 

Note: 

Network interpolation completed with the use of SANET ver. 4.1. 

In Figure 4.4, similar to composition of Figure 4.2, both spatio-temporal clusters and hot spot maps 

based on k-means groupings may be seen. The multi-dimensional plots again depict the location of 
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significantly clustered high severity crashes throughout the county; however, the temporal component 

now indicates the day of the week in which the cluster is present. The timeframe for the week starts off 

on Sunday, where depicted clusters are close to the surface of the county. As the week progresses 

through to Saturday, the clusters raise higher and higher from the surface of the county. Similar to the 

establishment of the Time Groups, the grouping of clusters into Day Groups is not user specified. The 

groups are again determined using the k-means clustering algorithm for both the single and multi-

vehicle crashes. The timeframe relating to each day group may be seen in the following table. 

Table 4.3. Time Groupings for Clusters by Day of Week. 

Grouped 
Cluster 

Single Vehicle Multi-Vehicle 
Combined 
Timeframe 

Day Group 1 Sunday – Monday Sunday – Monday Sunday – Monday 

Day Group 2 Tuesday - Wednesday Tuesday - Wednesday Tuesday - Wednesday 

Day Group 3 Thursday - Saturday Thursday - Saturday Thursday - Saturday 

Note: Day groups for the single and multi-vehicle clusters are determined through the use of the k-means clustering 
algorithm. 

The k-means clustering is now separated into three groups for the day of the week, as may be seen in 

Table 4.3. The days for both the single and multi-vehicle crashes fell on the same intervals. Therefore, 

when examining both sets of crashes together, the day groups align to be exactly the same.  

As may be seen in Figure 4.4, the significant clusters of single vehicle crashes shift extensively 

throughout the county. These clusters originate in the north western part of the county during the 

beginning of the week. Through the middle of the week, the single vehicle clusters may be found in the 

north-central portion of the county. Finally, at the end of the week, the single vehicle clusters disperse 

widely throughout the county. The significant clusters of multi-vehicle crashes also vary in location 

throughout the week. The multi-vehicle clusters are fairly spread-out throughout the county at the 

beginning of the week. By the middle of the week, there is a large significant cluster located just east of 

the center of the county. At the end of the week, the clusters are dispersed throughout the entire 

county. The large condensed areas of significantly clustered crashes seen in the early parts of the week 

may require a regional effort to provide a reduction in crash severity and occurrence. In contrast, the 

more dispersed condition of clusters may require local agencies in the area of specific clusters to 

address the problem of alcohol-related crashes. 
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As the individual movements of both the single and multi-vehicle clusters have been identified, the 

combined interaction of the two types of crashes must again be investigated. The roadways pertaining 

to statistically significant clusters of both single and multi-vehicle crashes may be seen in the following 

figure. 

Figure 4.5. Comparison of Single and Multi-Vehicle Hot Spots by Day of Week. 

Note: Network interpolation completed with the use of SANET ver. 4.1. 

As seen in Figure 4.5, there are again very limited occurrences of the single and multi-vehicle clusters 

appearing in the same location during the same time period. The largest combined area of both single 

and multi-vehicle clusters may be seen in Day Group 2. All other overlapping roadways are very small in 

Day Groups 1 and 3. Within Day Group 2, besides the overlapping portions of roadway, the significant 

clusters of single and multi-vehicle crashes occur in a very similar area. This does not occur throughout 

either the beginning or end of the week, however. The shifts in the location of significantly clustered 

crashes may readily be seen, as generally no hot spot covers the same location twice. This has a large 

influence on safety campaigns and would require multiple shifts in the locations patrolled by law 

enforcement. In comparison to the overall spatial analysis shown in Figure 1, only a small portion of the 

spatio-temporal hot spots occur in the same location as those determined without the influence of time. 

4.5 CONCLUSION 

Investigating the occurrence of crashes where an operator was under the influence of alcohol is 

important to both understanding the mechanics behind such crashes and identifying a campaign to 

reduce their number. Each aspect of the spatial, temporal, and spatio-temporal analysis tells a different 

story. While individual pieces may come from the spatial analysis and the temporal analysis, their 

marriage allows for the proper targeting of areas where alcohol intoxicated drivers may be traveling. 
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The spatio-temporal analysis not only implements a similar procedure to that of the purely spatial 

analysis, but also includes a moving timeframe to capture a temporal movement of the identified 

clusters. The use of the spatial weights matrix is a key ingredient into linking the spatial separation of 

crashes along a roadway network to a varying window of time. By providing an in-depth analysis into the 

crashes, relationships that are not recognized by either spatial or temporal analyses alone may be 

noticed, which may contribute to a deeper understanding of how to effectively reduce the occurrence of 

the crashes. 

The results of this study identified movements of hot spots both throughout the time of day and day of 

week. These movements are very important in the determination of a location to implement a safety 

campaign. For example, it is seen that within the day of week analysis, barely any of the hot spots 

reoccurred in the same location between the three time/day groups. If a safety campaign were to have 

been implemented in one location without adapting to the temporal movement of crashes, large 

significant clusters of crashes would remain unaddressed. Similar to the time of day analysis, if a safety 

campaign were to be implemented only in locations identified through Time Groups 1 and 2, valuable 

resources may be wasted as hot spots in those areas dissolve into Time Groups 3 and 4. 

Different strategies may be needed at various locations and times to address the issue of operating a 

vehicle while intoxicated, and these strategies may be related to the overall size or location of the 

identified hot spot. Large condensed hot spots may require a regional effort to reduce the severity and 

occurrence of crashes. Meanwhile, multiple small dispersed hot spots may require the effort of many 

local agencies in specific areas. Overall, this spatio-temporal analysis allows for an identification of when 

and where to stage safety implementations that spatial or temporal analyses alone may miss. By only 

investigating the relationship as to when or where crashes are occurring using a single form of analysis, 

an inefficient safety campaign may be implemented. 
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CHAPTER 5:  EXAMINING THE USE OF NORMALIZATION IN 

MAPPING OF ALCOHOL-RELATED HOT SPOTS 

5.1 INTRODUCTION 

A total of 33,561 traffic related fatalities occurred in 2012 (FHWA, 2015), the latest year of available 

data. Of these crashes, nearly one-third of the crashes resulted from an operator having a blood alcohol 

concentration (BAC) level of 0.08 or greater. This trend of having approximately 31% has been a 

continuing trend for at least the past 20 years. Studies investigating the effects of alcohol and the habits 

of drivers who drink have provided a wide breadth of knowledge. For instance, Kennedy et al. (1996) 

identified the high-risk involved with young drivers and alcohol use, stating that 70% of male drivers 

involved in alcohol-related fatal crashes were between the ages of 20 and 39. Voas, Tippetts, and Fell 

(2003) continued the investigation of young age and drinking through a study relating to the effects of 

minimum legal drinking age, which identified that the establishment of a zero tolerance BAC reduced 

alcohol involved crashes. Naimi et al. (2003) further studied the habits of drinkers, determining an 

increased likelihood of binge drinkers to drive impaired. The effect of drinking on driving-related skills 

has additionally been investigated by Moskowitz and Florentino (2000) at low BAC levels in an effort to 

determine the most effective legal limits.  

All of the previously listed research provides a great indication of the actions and habits of alcohol 

impaired drivers. While this information is important to know, a major contributor to reducing the 

number of alcohol-related crashes is the use of law enforcement. There are a number of strategies that 

are used to aid in this reduction that involve a high presence of law enforcement officers in specific 

areas. These types of strategies provide high visibility enforcement, which informs drivers that 

preventing driving under the influence of alcohol is a top priority. The presence of law enforcement is 

often in the form of saturation patrol or corridor patrol. Through corridor patrols, officers patrol the 

roadways known to contain the highest number of alcohol-related crashes. Saturation patrol performs 

in a similar manner; however, instead of being restricted to a few specific roads, a defined area is 

covered. Maistros et al. (2014) investigated a case study of both saturation and corridor patrol in which 

hot spots were used to identify the locations that law enforcement could cover. This case study 

identified that within hot spots, there is a statistically significant difference in average number stops per 

hour versus the number of stops per arrest of a person operating a vehicle while under the influence. 

As hot spots are shown to indicate where law enforcement officers may patrol, the identification of 

statistically significant areas is important to determine. Hot spots of crashes are determined based on 

the relationship between a value pertinent to a crash location and the distance separating each crash 

location from one another. There are a couple of different options for the value used within the 

calculation of the Gi*; it may either be based on the frequency of crashes or the severity of crashes 
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which have previously occurred. Hot spots usually identify locations where high values are in close 

relation to one another. A few methods may be employed to identify the spatial relationship of crashes. 

These methods include, but are not limited to, the use of kernel density estimation (KDE), Moran’s I, and 

the Getis-Ord Gi* statistic. KDE identifies the magnitude of the value in question per an area unit 

(Erdogan et al., 2008). Moran’s I identifies the relationship of similar or dissimilar values in relation to 

each other and allows for the determination of outliers (Erdogan, 2009). Meanwhile, the Gi* statistic 

determines the location of concentrated high or low values (Getis and Ord, 1992).  

Songchitruska and Zeng (2010) further explain the similarities and differences between some of these 

spatial statistics and the importance of using the Gi* statistic for identifying hot spots. Kuo et al. (2013) 

used the frequency of crashes to calculate the Getis-Ord Gi* statistic. This allowed clusters of crashes 

and crimes to be identified for police patrol routes. On the other hand, Truong and Somenahalli (2011) 

showed the ability to use injury severity as a weighting system for the calculation of the Gi* statistic. The 

resulting significant clusters of high severity crashes were then used to identify unsafe bus stops. 

While the use of hot spot analyses allows for specific areas of concern to be identified, there are often 

concerns raised when the hot spots are concentrated towards major cities or city centers. The general 

statement that is brought to the forefront is that due to high population densities there will, of course, 

be clusters of crashes in those locations. Comments have traditionally been raised that the relationship 

between crashes and population density should be addressed. Therefore, this research is directed 

towards tackling the issue of normalizing hot spots of crashes by population density. 

5.2 DATA 

Alcohol-related crashes from January 1, 2012 through April 9, 2015, are investigated in this study. These 

crashes were obtained from the Ohio Department of Public Safety’s OH-1 crash reports. The crashes 

were then divided and analyzed based on eight different counties. A breakdown of each county and 

their respective geographical description may be seen in the following table. 
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Table 5.1. County Geographical Makeup. 

County Major City 
Percent 
Urban 

Percent 
Rural 

Population 
Total Area 

(sq. mi.) 

Alcohol-
Related 
Crashes 

Cuyahoga Cleveland 91% 9% 1,280,122 459.0 3,366 

Summit Akron 71% 29% 541,781 420.0 1,809 

Franklin Columbus 72% 28% 1,163,414 544.0 4,040 

Hamilton Cincinnati 75% 25% 802,374 412.5 2,711 

Allen Lima 14% 86% 106,331 406.8 401 

Athens Athens 3% 97% 64,757 508.5 242 

Muskingum Zanesville 5% 95% 86,074 672.5 391 

Ross Chillicothe 3% 97% 78,064 692.8 334 

Note: Overall county population obtained from United States Census Bureau (2013). 

The counties selected for this analysis, which are listed in Table 5.1, were chosen due to the fact that 

they cover a wide range of geographies and crash occurrences. This allows the study to be more robust 

and not focus on only one type of study area. Four of the counties are comprised of at least 70% urban 

areas. In order to balance the urban counties, four additional counties were then selected that contain a 

similar percentage of rural areas. The mainly urban counties contain the four largest amounts of 

crashes, ranging from 1,809 to 4,040 alcohol-related crashes during the time period studied. Meanwhile, 

the counties that are comprised of mainly rural areas contain from 242 to 401 alcohol-related crashes. 

The wide range of populations may also be seen within Table 5.1. The urban counties all contain over 

500,000 people, while the rural counties contain less than 110,000. The overall size of each county is 

similar, ranging from about 400 to 700 square miles in area. However, those counties that have the 

smaller population sizes generally cover a larger area, making their overall population density less than 

in the counties with higher population. These various types of counties are used to investigate a wide 

range of population distributions. 
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In order to determine the population distribution, such as the population density and urban/rural 

geographical information, decennial census information was obtained from the United States Census 

Bureau for the year 2010. The census data was obtained at two levels, the block and tract levels. The 

census blocks provided the information pertinent to an area being described as urban or rural. 

Meanwhile, the census tracts provided the population density values. Population densities could be 

obtained from census blocks; however, at the block level, many areas may be seen to contain 

populations of zero. When populations of zero occur, normalized crash values drastically spike in 

locations where there are no residents but a large presence of people. 

5.3 METHODOLOGY 

The influence of normalization of hot spots, which are calculated based on both the frequency and the 

injury severity of crashes, is being investigated in this research effort. Therefore, a total of four hot spots 

are being investigated for each county: two normalized hot spots and two non-normalized hot spots. 

The frequency of crashes is determined by those crashes that occur in the exact same location. 

Meanwhile, the injury severity is based on the greatest level of injury realized by all parties involved. The 

injury severity is also weighted based on the societal crash costs determined within the Highway Safety 

Manual (AASHTO, 2010). The weighted injury severities relate to either a fatal injury (K), injury (A/B/C), 

or property damage only (O) crash severity level.  

5.3.1 Population Density  

Population density information is created using data from the latest decennial census. The latest census 

available for this study is obtained from the 2010 census. This data is aggregated into zones within each 

county. These zones provide a specific population and attributed area. However, due to the specific 

boundaries obtained from zonally based values available from the census, population densities could 

drastically change in a matter of feet when changing from one census tract to another. If using these 

values straight as they were obtained, the population density relating to two crashes within the same 

tract would be the same, no matter if they were two feet apart or 2,000. Similarly, two crashes that are 

only 20 feet apart but contained within two separate census tracts may relate to very different 

population densities. 

In order to smooth the population densities to provide a gradual change, it is necessary to interpolate 

the values obtained from the decennial census. Inverse distance weighting (IDW) interpolation is used to 

accomplish this task. The use of IDW and its abilities to interpolate unknown values is further described 

by Mehdi et al. (2011). IDW interpolation is computed using the following equation: 
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where, z0 is the estimated z-score at unknown location 0, zi is the measured z-score at location i, s is the 

number of crash clusters used to estimate the unknown z-score, di is the network based distance 

separating locations i and 0, and k is the power that smooths the z-scores based on the influence of 

distance (Ansari and Kale, 2014). This allows each crash to have its own specific associated population 

density, even if it is within the same census tract as another crash. When the normalization by 

population density is applied, the value studied for spatial autocorrelation is either crashes per person 

per square mile or societal cost per person per square mile. 

5.3.2 Spatial Autocorrelation 

Spatial autocorrelation is calculated in this study using the Gi* statistic. This statistic functions on the 

null hypothesis that all crashes are randomly distributed. Using a statistical significance level of 0.05, 

associated with a z-score of ±1.96 for a crash, indicates that the null hypothesis should be rejected and 

the crash may be considered to be either a hot spot or a cold spot. Hot spots are those in which high 

values, either the frequency or the cost of crashes, are located in close proximity to other high values. 

Cold spots, on the other hand, are those in which low values are located in close proximity to other low 

values. The Gi* statistic is calculated using the following equation: 
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where wij(d) is the spatial weight, xj is either the frequency or cost associated value, 𝑥̅ is the average of 

all frequency or cost values, and n is the total number of crashes (Prasannakumar et al., 2011). 

The spatial weight used in the calculation of the Gi* is dependent upon the distance separating one 

crash from another in comparison to the threshold distance. The threshold distance is one such that all 

crashes have at least one neighbor. The spatial weight is a fixed value for those crashes that occur within 

the threshold distance. All crashes that occur within this distance retain a value of one, while all other 

crashes retain a value of zero. This allows crashes that are within the threshold distance to be included 

in the Gi* calculation. All distances to determine whether a crash is within the threshold distance or not 
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are calculated using a network-based distance. This type of distance strictly follows along the path of the 

roadway. 

5.3.3 Interpolation of Spatial Autocorrelation  

The calculation of spatial autocorrelation provides a specific value to each studied crash location. In 

order to depict these statistically significant clustered locations, the clustering value of each crash must 

be interpolated along the roadways. This provides a clearly defined hot spot area in which law 

enforcement may operate safety measures. The interpolation used to display the crash data is different 

from that used within the demographic information. As the distance measurements for the calculation 

of the spatial autocorrelation follows along the roadway network, so do those of the interpolation. The 

demographic information does not necessarily follow a strict network, and patterns may smoothly 

transition over open fields, backyards, playgrounds, and other areas. Crash patterns, however, are 

restricted because they occur on a roadway network. The theory of interpolating values along a network 

may be common; however, the availability of software to complete this task is not. Therefore, SANET 

(Ver. 4.1) was retained for the completion of this task. This software uses IDW to determine the 

interpolated value at all locations.  

5.4 RESULTS 

There are a few different levels of census data that could be converted to population density. These 

levels range from the block, block group, tract, and county levels. The census block is the smallest level, 

which would work great for obtaining the best resolution of population data; however, at this level, 

there are many areas that contain values of zero population. This trend decreases as use of census data 

transfers from individual blocks to block groups, and finally to the level of a census tract. There still are 

some census tracts that contain populations of zero; however, the occurrence of these is very minimal in 

comparison to both the census block and block groups. When populations of zero occur, normalized 

crash values drastically spike in locations where there are no residents but there may be a large number 

of people traveling within the area. The population density for each census tract is calculated based on 

the population observed in a tract divided by the area in which each tract covers. Due to the boundaries 

obtained from zonally based values available from the census, population densities could drastically 

change in a matter of feet when changing from one census tract to another. 

In an effort to reduce the effect of the boundaries and to smooth values over census tracts with zero 

population, the population densities of the census tracts are interpolated. IDW interpolation is used to 

accomplish this smooth transition throughout an entire counties area. Maps of these interpolated 

population densities may be seen in the following figure. 
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Figure 5.1. County Population Density. 

Note: The color ramp is based on the population density (persons per square mile). The lighter areas correlate to 
higher population densities. Meanwhile, the darker areas correlate to lower population densities. 

It may be seen from Figure 5.1 that there is typically one densely populated area within each county. 

These highlighted areas are the locations of concern when investigating the normalization of hot spots. 

The peak population densities for the two densest urban counties are 28,956 and 23,231 people per 

square mile, relating to the cities of Columbus in Franklin County and Cleveland in Cuyahoga County, 

respectively. The peak population densities for the two least dense rural counties are 3,525 and 5,445 

people per square mile, relating to the cities of Zanesville in Muskingum County and Lima in Allen 

County, respectively. There is a visual difference in the interpolated population densities between the 
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urban counties and the rural counties. The urban counties have more census tracts being interpolated 

and higher populations in the areas surrounding the central city in the county. This leads the densities 

depicted in Figure 5.1 to appear less intense and more spread out. Meanwhile, the rural counties have 

larger census tracts and the population density in the central city in the county has a higher influence. 

This leads the densities, depicted in Figure 5.1, in the location of these central cities to appear much 

more intense. The influence of the shape of the population densities has a direct relation to the 

normalization of hot spots. While population density is a good indication of where people are present, 

roadway density was also believed to have an impact on the normalization of clusters. The additional 

input of roadway density was examined for its impact; however, an investigation of the cross covariance 

did not reveal any trends that would have improved the normalizing factor. 

Four hot spot maps were created for each of the eight counties studied in this research effort. The hot 

spots are based on the frequency of crashes, frequency of crashes normalized by population density, 

societal cost of the crashes, and the societal cost of the crashes normalized by population density. Each 

of these hot spot maps for the heavily urban counties may be seen in the following figure. 
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Figure 5.2. Hot Spot Maps of Urban Counties. 

Note: Network interpolation completed with the use of SANET ver. 4.1. The color ramp is based on Gi* z-score. The 
roadways in red are more significant towards clustering of high values. The roadways in blue are more significant 
towards clustering of low values. 
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Figure 5.2 identifies the z-score relating to each roadway within the studied counties. Those roadways 

that are indicated in a red color are more significant towards the clustering of high values. On the other 

hand, those roadways that are blue in color are more significant towards clusters of low values. The 

frequency clusters are calculated based on the number of crashes in the same location, while the cost 

based maps are calculated based on the societal costs of crashes in the same location. The normalized 

maps are calculated using either the frequency or cost of crashes divided by the population density, in 

persons per square mile. Trends, such as those presented in Figure 5.2, may be depicted for each type of 

hot spot map. For those maps based on the frequency of crashes, hot spots are generally found towards 

the largest city within the county. The demographics of these cities are also the location of the highest 

population densities. This similarity in location indicates the influence of population density on the 

frequency based maps. These maps also contain a more consolidated hot spot in the high populous 

areas than the hot spots identified from the remaining types of maps. The influence of a safety 

campaign in such an area would provide a target of letting the population know that alcohol-related 

crashes are of concern. These locations may be best suited for educational campaigns due to the high 

influence of population or for high visibility campaigns, where large numbers of motorists would see the 

presence of enforcement. 

The second column of maps is similar to the first, with the aspect that they are both determined based 

on the frequency of crashes; however, this set of maps is normalized based on the population density of 

the surrounding area. Within the second column of hot spot maps, almost the reverse of the hot spots 

based purely on the frequency may be seen. In other words, there is a tendency towards cold spots, or 

locations of low values in close proximity to other low values, at locations of high population density. 

The hot spots in the second column of maps then shifts towards the outer edges of the counties. The 

inclusion of cold spot in the same area as the hot spots from the maps in the first column does not 

remove the influence of population density. It in turn identifies a significantly clustered area in the same 

location and identifies additional hot spots in the outer edges of the county that must then be included 

in safety campaigns. This would thus require an even larger effort by educators, enforcement, and 

engineers to eliminate hazards. 

The third column of maps represents those that are clustered based on the societal cost of the highest 

injury severity involved in the crash. Within these maps, the hot spots return back towards the major 

metropolitan areas. However, the hot spots are not necessarily located at the highest population areas, 

as seen from the first column of maps. The cost-based hot spots tend to have a higher presence in the 

areas surrounding the high population areas, when compared to the frequency based maps, but they 

are not as dispersed to the outer portions of the counties, as seen in the normalized frequency based 

maps. Thus, the influence of high population areas is not as great as those seen from the frequency 

based maps. In turn, safety campaigns implemented in locations identified by the societal cost based 
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maps would have a higher impact on the crashes it may reduce. A safety campaign in these identified 

areas would be best suited for lowering the overall severity of crashes. 

The maps of societal costs normalized by population density are similar to those maps of crash 

frequency normalized by population density. There are, however, some small differences in the hot and 

cold spots. The cold spots, again, tend to appear near the highly dense population area, and the hot 

spots appear towards the outer edges of the county. These similarities slightly differ in the aspect that 

the cold spots are not as vast or are constrained by the presence of a nearby hot spot. Similar to the 

effect caused by the normalized frequency maps, the inclusion of both cold spots and hot spots would 

create the need for a larger effort by educators, enforcement, and engineers to eliminate or reduce 

alcohol-related crashes. 

In an effort to determine if the effects seen in the highly urban counties are specific to those population 

conditions, four counties that are comprised of mostly rural areas area also examined. These maps cover 

both the normalized and non-normalized analyses based on either the frequency or cost of crashes. The 

maps for these additional four counties may be seen in the following figure. 
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Figure 5.3. Hot Spot Maps of Rural Counties. 

Note: 
Network interpolation completed with the use of SANET ver. 4.1. The color ramp is based on z-score of the Gi*. The 
roadways colored in red are more significant towards clustering of high values. The roadways in blue are more 
significant towards clustering of low values. 

The maps that may be seen in Figure 5.3 contain similar trends to those described for Figure 5.2, where 

the non-normalized maps form hot spots around the highly dense populations, in contrast to the 
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normalized maps that form cold spots in the same area. Even though the non-normalized maps exhibit 

hot spots in similar areas, around the presence of these dense populations, those resulting from urban 

counties tend to be larger and more apparent than those in rural counties. The mostly rural counties 

have smaller and less dense population demographics, resulting in hot and cold spots that are generally 

smoother and less interrupted by one another. The areas around the major metropolitan cities seen 

within Figure 5.2 may be seen to more rapidly change between being a hot spot and a cold spot. This 

effect is less noticeable in Figure 5.3, where the change is often more gradual. Additional differences 

between Figures 5.2 and 5.3 are the intensity of the color ramps depicting the z-score along the 

roadways. These color ramps appear to be different in a visual sense, but the only variation is due to the 

density of roads within urban versus rural counties. 

One aspect that may be gleaned from both Figures 5.2 and 5.3 is that the normalization of the spatial 

autocorrelation generally takes the hot spot out of the densely populated areas and moves them 

towards the outer edges of the counties. Meanwhile, cold spots develop in areas similar to those of the 

hot spot that was just normalized. Additionally, both the frequency and cost-related hot spots are 

identified in similar areas; however, there are some differences. The frequency-based hot spots seem to 

be highly related to the location of densely populated areas. The cost-based maps, however, seem to be 

less discretionary about the population density of the area in which they are located. 

Some more telling information about the demographics of where the hot spots are located may come 

from an examination of the urban and rural areas within each county. Even though each county contains 

more than 70% of either urban or rural areas, the composition of which locations the hot spots relate to 

changes from map to map. The amount of roadway that each hot spot covers in both urban and rural 

environments in each county may be seen in the following table. 
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Table 5.2. Geographical Coverage of Significant Hot Spots. 

Urban Counties Rural Counties 

 
Percent 
Urban 

Percent 
Rural   

Percent 
Urban 

Percent 
Rural 

Cuyahoga   Allen   

Cost 70% 30% Cost 12% 88% 

Normalized Cost 79% 21% Normalized Cost 11% 89% 

Frequency 100% 0% Frequency 100% 0% 

Normalized Frequency 94% 6% Normalized Frequency 9% 91% 

Summit   Athens   

Cost 63% 37% Cost 4% 96% 

Normalized Cost 46% 54% Normalized Cost 0% 100% 

Frequency 100% 0% Frequency 44% 56% 

Normalized Frequency 70% 30% Normalized Frequency 69% 31% 

Franklin   Muskingum   

Cost 88% 12% Cost 10% 90% 

Normalized Cost 73% 27% Normalized Cost 7% 93% 

Frequency 100% 0% Frequency 54% 46% 
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Normalized Frequency 84% 16% Normalized Frequency 3% 97% 

Hamilton   Ross   

Cost 92% 8% Cost 0% 100% 

Normalized Cost 81% 19% Normalized Cost 0% 100% 

Frequency 100% 0% Frequency 52% 48% 

Normalized Frequency 78% 22% Normalized Frequency 0% 100% 

Note: The percent of roadway is based on the length of road, of a statistically significant cluster of high values, 
which passes through either urban or rural land types. 

The change in the demographics associated with the hot spots may be seen in Table 5.2. These 

percentages are based on the amount of roadway, which is part of a statistically significant cluster of 

high values, in either urban or rural land types. For example, if half of the roadways identified as being a 

statistically significant cluster of high values fall within an urban area, it would be attributed to being 

50% urban. The hot spots calculated through the frequency of crashes are seen to relate to the highest 

percentage of urban roadways. This follows the explanation described earlier for Figures 5.2 and 5.3, 

where the frequency based hot spots correlate to the most densely populated areas. One thought 

regarding normalization is that even when weighting crashes by injury severity, the hot spots tend to 

lean towards densely populated areas. It may be seen, however, that this is not always the case, and 

that oftentimes hot spots of crash costs relate to a higher percentage of rural roadways than their 

normalized counterparts. There is a greater tendency for the percentage of urban and rural roadways 

identified within cost based hot spots to relate to the overall percent of urban and rural roadways within 

each county. This identifies that the cost based maps relate the best to the overall demographics of the 

county and have the least bias of population density present of the four types of hot spot maps 

analyzed. 

5.5 CONCLUSION 

A past concern with hot spots is their tendency to occur in highly populous areas. Many suggestions 

have risen through past research that population density should be accounted for within the calculation 

of hot spots. In attempt to implement such variables, the act of normalizing hot spots by population 

density was investigated through this study. A wide range of geographies were studied in attempt to 
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investigate the reaction of normalization in areas of both high and low populations. In total, four 

counties that contain at least 70% urban areas and four counties that contain at least 70% rural areas 

were considered. 

With the census population being obtained at the tract level, the calculated population densities were 

bound by zonal boundaries. This created the possibility for drastic changes in population density when 

moving from one census tract to another. In order to remove this aggregated trend, the population 

density was interpolated over entire counties. The use of IDW created a smooth transition of values 

from one crash to another. From the interpolated population densities, the locations to be accounted 

for through normalization are able to be identified. The peak population density for all of the counties 

examined ranged from almost 29,000 down to about 3,500 people per square mile. This allowed for the 

effects of a wide range of geographies to be examined.  

Hot spots were identified through the calculation of the Gi* statistic. This statistic was examined using 

two main variables of concern, frequency of crashes and the cost of injury severity. Additionally, both of 

these variables were normalized for population density. Similarities and differences were able to be 

seen when comparing the non-normalized and normalized maps. The non-normalized maps tended to 

have hot spots closer to the highly populated areas, as was the concern giving reason to conduct this 

study. The normalized maps removed the hot spots from these same areas, and forced the clustering of 

high values to be indicated in remote areas around the edges of each county. This created hot spots in 

locations where crashes rarely occurred, which may make the implementation of safety tactics less 

effective. Additionally, with the movement of hot spots away from dense populations came the 

inclusion of large cold spots. These cold spots turned up in the locations of the densely populated areas, 

which effectively reduced the purpose of normalizing the maps, by creating a new cluster in the location 

of dense populations. When comparing the location of hot spots within the non-normalized maps, 

variations in their geographical makeup are able to be identified. These variations relate to the cluster 

maps based on the frequency of crashes to be centrally located in dense urban environments; 

meanwhile, the maps based on the societal crash costs contained hot spots covering much larger rural 

geographies. The implementation of safety campaigns in dense population areas may make the efforts 

of law enforcement more widely known to the public. On the other hand, covering a variety of 

geographies and not being heavily persuaded by population density may ultimately reduce the injury 

severity of alcohol-related crashes. This study showed that while the cost-based hot spots are directed 

towards locations of higher populations, it is not a strictly confounding relationship. The cost-based hot 

spots routinely addressed less dense, rural locations. 

Overall, the appropriate hot spot analysis methodology to use depends on the application of the study. 

The normalized maps, while reducing the presence of hot spots in densely populated areas, negates its 

purpose by introducing cold spots in the same location. Thus, the non-normalized hot spot maps still 

have relevance. The frequency-based hot spot maps contain the highest proclivity to target densely 
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populated areas. For the use of reducing alcohol-related crashes, this procedure would be most 

applicable to the implementation of high visibility enforcement campaigns. This in turn may send a 

signal to all drivers that there is a high presence of law enforcement interested in stopping alcohol 

intoxicated drivers before they crash. The cost-based hot spot maps contain the ability to address both 

urban and rural communities. This procedure provides the best opportunity for reducing alcohol-related 

crashes, while at the same time not specifically targeting densely populated areas. The best opportunity 

for cost-based hot spot maps is the implementation of saturation or corridor patrols, which may have an 

emphasis on reducing high severity crashes. 
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CHAPTER 6:  USING LOCAL INDICATORS OF SPATIAL 

ASSOCIATION FROM HOT SPOT ANALYSES TO IMPROVE 

PATROLS AND REDUCE ALCOHOL-RELATED CRASHES

6.1 INTRODUCTION 

Alcohol-related crashes have been a consistent problem in the United States. From 1999 through 2014 

alcohol-related fatalities accounted for over 30% of total vehicle fatalities in the United States (NHTSA, 

2014). The use of enforcement strategies, such as sobriety checkpoints and saturation patrols, helps to 

control the amount of intoxicated driving (Sanem et al., 2015), however due to the consistency of 

alcohol-related fatalities in recent years, there is still room for improvement. These enforcement 

strategies are also costly, creating a need for increased funding or efficiency in the current practices of 

patrolling. 

The National Highway Traffic Safety Administration (NHTSA) utilizes the strategy of Data-Driven 

Approaches to Crime and Traffic Safety (DDACTS). DDACTS determines the most effective ways to 

reduce crimes and crashes through the use of location-based data collection. Temporal and 

environmental factors, as well as hot spot maps are used to identify significant locations of concern. 

These significant areas are then used to determine strategies to resolve the crime and crash problems.  

Driving while intoxicated has been an area of concern since 1903 when the Quarterly Journal of Inebriety 

expressed concern about intoxicated operators of “motorized wagons” (Shepard, 1903). Moving forward 

in time to 2013-2014, the National Roadside Survey of Alcohol and Drug Use by Drivers reported that 

5.2% of drivers were under the influence of alcohol (reduced from 1973 when 22.3% of drivers were 

intoxicated) (Berning et al., 2015). The reasons behind intoxicated driving and the dangers of it have 

been widely studied, including how the perception of one’s own level of intoxication or how one views 

others in society influence their own decisions (Gellar and Smith, 2014; Meesmann et al., 2015; 

Christoforou et al., 2012; Turner and Georggi, 2001; Timmerman et al., 2003; Harrison and Fillmore, 

2005). Though the amount of intoxicated drivers have decreased from when it first became a noticeable 

issue, they are still very prevalent, giving research and officers determination to discover which methods 

best deter people from driving intoxicated. Sanem, et al. (2015) found that the combined use of multiple 

enforcement strategies, such as sobriety checkpoints, saturation patrols, and open container laws, 

decrease the amount of intoxicated driving. The amount of enforcement in areas has also been proven 

to show reductions in the amount of people willing to drive intoxicated (Fell et al., 2014). Additional 

research shows the effects that enforcement strategies may have on the reduction of alcohol-related 

crashes (Fell et al., 2008; Jai et al., 2016; Fell et al., 2014; Blais et al., 2015; Elder et al., 2004; Vollrath et 

al, 2005). 
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Despite the research indicating that impaired driving is a problem and enforcement strategies may 

reduce the amount of alcohol-related crashes, efforts must continue to improve these enforcement 

practices. Hot spot methodologies, as explained by Songchitruska and Zeng (2010), have been proven to 

identify spatial relationships between high-impact crashes. Songchitruska and Zeng ultimately found the 

use of hot spot analyses to be an effective tool that may be used for decision making processes and 

incident detection. The use of hot spot analyses was also used by Maistros, et al. (2014) to locate 

significant areas of alcohol-related crashes in Stark County, Ohio. A similar application of hot spot 

analysis was conducted by Kuo, Lord, and Walden (2013) who took the hot spots of crimes and accidents 

and routed officers to the top five and top ten hot spots in College Station, Texas with hopes of reducing 

police dispatch times. These researchers, along with many others (Ratcliffe and McCullagh, 2001; Truong 

and Somenahalli, 2011; Carrick et al., 2014; Prasannakumar, et al., 2011; Khan et al., 2009; Cheng and 

Washington, 2008) have studied the benefits of hot spot analysis as a whole. 

However further research has shown more in depth studies of these hot spots, analyzing local indicators 

of spatial association (LISA). Luc Anselin (1995) describes how the Gi and Gi* statistics may be used to 

identify these local indicators of spatial association, which may prove to be very beneficial in further 

studies of spatial data. De Vlack, et al. (2016) used LISA to show the substitutability of recreation areas 

in Belgium, showing the differences between hot and cold spots and how they relate to the Gi* 

statistics. Since the Anselin study of 1995, LISA has frequently been used to identify significant areas of 

interest (Johnston and Ramachandran, 2014; Nelson and Boots, 2008; Ratcliffe and McCullagh, 2001). 

This research focuses on reducing the amount of alcohol-related crashes in the state of Ohio by 

developing a new method of patrolling through statistically significant hot spots. The DDACTS approach 

is utilized by taking hot spot maps created based on alcohol-related crash locations to show significant 

locations of these alcohol-related crashes. These hot spot maps are broken down into three confidence 

levels, 90% confidence, 95% confidence, and 99% confidence. Each county has a different amount of 

significant locations for each confidence level. Oftentimes there may be hundreds of significant locations 

that cover a concentrated area in the county, and as a result, patrolling each significant location may not 

necessarily be the most efficient way to locate intoxicated drivers. This research will determine if it is 

acceptable to patrol only the 99% confidence level locations, or the 95% and 99% confidence level 

locations. With the limited funding provided by the State, the amount of officers needed to patrol the 

network locations in a given shift time will be examined, as well as the officers’ ability to cover the 

network locations. The goal of this chapter is to guide officers to more significant areas where 

intoxicated drivers are likely to be. This is found by using LISA from hot spot maps created off of 

frequency based alcohol-related crashes. The results of this research will be used to send officers to 

significant locations with hopes of reducing the amount of alcohol-related crashes. 
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6.2 DATA 

The data sources for this study include crash records populated from the state of Ohio OH-1 crash 

reports (ODPS, 2015), the Ohio Department of Transportation (ODOT) Geographic Information Systems 

(GIS) roads layer (ODOT, 2016), and United States Census estimates information (United States Census 

Bureau, 2015). Using these three databases, the research team selected Franklin, Summit and Ross 

counties for analysis. All alcohol-related crashes in each county from January 1, 2012 through April 9, 

2015 are included in the analysis. 

Franklin County was selected due to its high population (greater than one million people), it 

encompasses the large metropolitan area of the City of Columbus, and its high number of alcohol-

related crashes. Summit County was selected due to its large urban areas with a population greater than 

500,000 people and a significantly high number of alcohol-related crashes. In contrast, Ross County is a 

predominantly rural county with a total population less than 100,000 people, and has a road network a 

quarter the size of Franklin County. Historically, Franklin County and Summit County are both in the top 

ten counties statewide with the highest number of alcohol-related fatalities per year. A summary the 

general characteristics of each of the three counties may be seen in Table 6.2.1. 

Table 6.2.1: Comparison of Franklin, Summit, and Ross Counties 

 

County Population Population Density (per sq. mi.) Lane Miles Total Alcohol-Related Crashes

Franklin 1,251,772 2,186 5,670 4,051

Summit 541,968 1,313 3,608 1,805

Ross 77,170 113 1,429 334

County Comparison

Note: County Population and Population Density determined from United States Census Bureau Quick Facts. 

Lane Miles determined from Ohio Department of Transportation ArcGIS Roads Layer.

Total Alcohol-Related Crashes determined from Ohio Department of Public Safety OH-1 Crash Reports.

As shown in Table 6.2.1, there is a wide range of demographics, road networks and alcohol-related 

crashes between these three counties. This paper will use these counties as case studies as a 

demonstration for a new methodology that law enforcement agencies may use to help curb alcohol-

related crashes. 

6.3 METHODOLOGY 

The hot spot maps of Franklin, Summit and Ross counties are used to help improve the efficiency of 

officers patrolling for intoxicated drivers. The output of these hot spot maps, explained by Songchitruska 

and Zeng (2010) and De Vlack et al. (2016), shows hot (red) and cold (blue) spots for each county. This 

may be seen in Figure 6.3.1. Each individual point on the map is considered a local indicator of spatial 

association (LISA), which has a Gi* statistic that shows each cluster’s significance (De Vlack et al., 2016). 

The types of significance for these clusters may be broken down into seven categories, 90%, 95%, or 
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99% confidence level for hot and cold spots, or no significance. The focus of this research will remain on 

the hot spots, since they represent frequency-based alcohol-related crashes. 

Figure 6.3.1: Hot Spot Maps of Franklin (left), Summit (middle), and Ross (Right) Counties 

Network locations, which are points that are used in ArcGIS to guide patrol officers to each hot spot, are 

overlaid onto the 90%, 95%, and 99% confident level hot spots for each map. Locations identified as 99% 

confident are the most significant, indicating that there is a 1% chance that any location in this category 

is not actually significant. This pattern is similar for locations in the 95% and 90% confidence levels. The 

network locations are all located on road networks, allowing officers to eventually be routed to them. 

The significant network locations for Franklin, Summit and Ross counties may be seen in Figure 6.3.2, 

Figure 6.3.3, and Figure 6.3.4. 
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Figure 6.3.2: Significant Network Locations for Franklin County for 90% confidence levels (left), 95% confidence 

levels (middle), and 99% confidence levels (right). 

Figure 6.3.3: Significant Network Locations for Summit County for 90% confidence levels (left), 95% confidence 

levels (middle), and 99% confidence levels (right). 
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Figure 6.3.4: Significant Network Locations for Ross County for 90% confidence levels (left), 95% confidence 

levels (middle), and 99% confidence levels (right). 

Each column in Figure 6.3.2, Figure 6.3.3, and Figure 6.3.4 represents a different confidence level. It 

should be noted that as the significance increases, the amount of network locations decreases. This may 

be verified through Table 6.3.1, which shows the exact of amount of network locations for each county. 

Table 6.3.1: Count of Network Locations for each Confidence Level for Franklin, Summit, and Ross Counties 

 

County 90% 95% 99%

Franklin 857 728 566

Summit 398 329 184

Ross 111 79 18

Count of Network Locations per Confidence Levels

Note: The count of 95% network locations includes the 99% 

network locations. Similarly, the count of 90% network 

locations includes the count of 95% and 99% network 

Table 6.3.1 shows the decrease in network locations as the confidence level increases. This indicates, 

that the points at the 99% confidence level may be more significant; however there may be less of them. 

Officers patrolling these locations may have fewer locations to pass through; however they may be most 

successful patrolling these locations. Officers patrolling the network locations at the 90% confidence 

level will have many locations to patrol, however officers may not be as efficient when patrolling these 

locations. The confidence level of each location represents that location’s ability to reject the null 

hypothesis. The network locations with a higher confidence level indicate locations where there is a 

higher chance of intoxicated drivers being present. As a result, network locations with a higher chance 

of presence of intoxicated drivers often occurs less than network locations with a lower chance of 
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presence of intoxicated drivers. This methodology is similar to how Johnston & Ramachandran (2014) 

identified statistically significant hot and cold spots from LISA analyses, and will be used to improve the 

efficiency of officers being able to locate intoxicated drivers. 

One solution in determining where officers should patrol for intoxicated drivers would be to send them 

to all significant locations in each county, in order to locate as many intoxicated drivers as possible. 

However funding is often limited for state agencies, therefore it may be more efficient for officers to 

patrol only the more significant locations. By having fewer locations to patrol, less manpower may be 

required to cover these locations in a shift. In order to justify officers patrolling only the network 

locations in the 95% or 99% confidence levels, relationships between the three levels of network 

locations are created. 

The first relationship observed is the amount network locations at the 95% and 99% confidence level 

compared to the amount network locations at the 90% confidence level. This relationship may be seen 

in Table 6.3.2. If for example, the percent of 99% confident network locations was very large, it may be 

acceptable to allow patrol officers to patrol only the 99% confident network locations, since they will be 

going to most locations and have the highest chances of stopping intoxicated drivers. 

Table 6.3.2: Percent of 95% and 99% Confident Network Locations Compared to the Amount of 90% Confident 

Network Locations 

  

County 90% 95% Percent of 90 99% Percent of 90

Franklin 857 728 85 566 66

Summit 398 329 83 184 46

Ross 111 79 71 18 16

Count and Percent of Network Locations per Confidence Levels

Note: This table shows the number of network locations in each 

confidence level as well as the proportion of 95% and 99% confident 

network locations that are included in the 90% confident network 

The 99% confident network locations account for less than half of the total significant network locations 

for Ross and Summit counties. If officers were to patrol only the 99% confident network locations they 

will fail to patrol over half of the total significant locations where intoxicated drivers are likely to be 

present, however the locations they do patrol will have the highest chance of a presence of intoxicated 

drivers. With less network locations to patrol, less officers may be needed to patrol these locations 

during a given shift time. Using the 99% confident network locations may be the best economic practice 

for police stations in some counties, spending less money on manpower (less man-hours worked as a 

result of less officers needed to patrol the network locations) and having the most accuracy on locating 

the intoxicated drivers. However in some counties the 99% confident network locations may not cover 

enough area for officers to be efficient in patrolling for intoxicated drivers, whereas the 95% or 90% 

confident network locations may provide more coverage for officers to patrol. 
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The 95% confident network locations account for over 70% of the total network locations for all three 

counties. With more locations to patrol, officers will be more accurate in covering the significant 

locations. Since these locations are 95% confident, there remains only a 5% chance that any location is 

not significant, so the chances of locating intoxicated drivers remains high. However, since there are 

more significant network locations, more officers may be needed to patrol these locations in a given 

shift time. As a result, the cost of patrolling these locations may be increased. 

The second relationship observed to determine if it may be acceptable to use the 95% or 99% confident 

network locations is the coverage of each group of network locations. As seen in Figure 6.3.5, Figure 

6.3.6, and Figure 6.3.7, the network locations are mainly dispersed around very few central locations. If 

the 99% or 95% confident network locations appear to be covering most of the significant locations, it 

may be acceptable to allow officers to patrol only those locations, as opposed to patrolling all significant 

locations. However, if the network locations of higher confidence levels fail to cover a large portion of 

the significant areas, it may be more useful for officers to patrol a lower confidence level for the 

purpose of stopping more intoxicated drivers. Figure 6.3.2, Figure 6.3.3, and Figure 6.3.4 shows the 

network locations for each confidence level for Franklin, Summit, and Ross counties. The identified 

section of each county in Figure 6.3.2, Figure 6.3.3, and Figure 6.3.4 is shown in Figure 6.3.5, Figure 

6.3.6, and Figure 6.3.7. 

Figure 6.3.5: Significant Network Locations for Franklin County for 90% confidence levels (left), 95% confidence 

levels (middle), and 99% confidence levels (right), zoomed in. 
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Figure 6.3.6: Significant Network Locations for Summit County for 90% confidence levels (left), 95% confidence 

levels (middle), and 99% confidence levels (right), zoomed in. 

Figure 6.3.7: Significant Network Locations for Ross County for 90% confidence levels (left), 95% confidence 

levels (middle), and 99% confidence levels (right), zoomed in. 

The 99% confident network locations for Franklin, Ross, and Summit counties represent 66%, 16%, and 

46% of the total significant network locations, respectively (as seen in Table 6.3.2). The 99% confident 

network locations in Franklin County are greatly reduced, especially when noticing the top of area 2, as 

well as all of area 3. The 99% confident network locations for Summit County are located only in the City 

of Akron, instead of in surrounding suburbs of Tallmadge and Cuyahoga Falls. Ross County reflects a 

similar trend to Franklin County noticing that network locations are not present at all within the City of 

Chillicothe. Patrolling the only 99% confident network locations for these three counties may reduce 

chances of locating intoxicated drivers where their presence is still significant. The network locations for 
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Franklin, Summit, and Ross counties with a 95% confidence level represent 85%, 71% and 83% of the 

total significant network locations, respectively (as seen in Table 6.3.2). This means that officers 

patrolling the 95% confident network locations may cover most of the majority of the total significant 

areas, allowing officers increased effectiveness when patrolling for intoxicated drivers. The 95% 

confident network locations for Franklin County remain largely present in all identified areas. These 

trends are similar for both Summit and Ross Counties. The number of 95% confident network locations 

is reduced, however officers patrolling these locations will continue to patrol each city as well as 

surrounding suburbs. 

Patrolling the 95% and 99% confident network locations for each county may have a reduced cost when 

comparing to patrolling for all three confidence levels. There are fewer network locations in the 95% 

confidence level than the 90% confidence level, indicating fewer officers may be required to patrol these 

locations in a given shift time. The decrease in the amount of officers may reduce the cost of patrolling; 

however, chances of stopping intoxicated drivers at these locations remain high since there is either a 

5% or 1% chance of each location not being significant. Patrolling the 99% confident network locations 

may yield the most reduced costs. The 99% confidence level has the least amount of network locations 

for each county, meaning there may be less officers required to patrol the significant areas for a given 

shift time, as well as less equipment required to cover the patrols. The decrease in officers and 

equipment indicate less man-hours and reduced costs. Despite the reduced amount network locations, 

officers have the greatest chance of locating intoxicated drivers at the 99% confidence level. 

The third relationship to determine the confidence level for officers to patrol uses radii of different 

lengths around the 95% and 99% confident network locations. If a large amount of network locations in 

the 95% or 99% confidence levels are within a specific distance from the 90% confident level network 

locations, it may be appropriate to justify using the 95% or 99% confident network locations for officers 

to patrol. The different lengths of radii used may be seen in Table 6.3.3, which represent the interests of 

different professionals using this application. For example, someone who models crashes may need to 

be very detailed in locating each crash. Miller and Karr (1998) express the concern of the location of 

crashes, and how these locations are important in the modeling after accidents. As a result, the end user 

may want a shorter radius to compare crashes, such as 0.01 or 0.05 miles. However, a police officer who 

is looking to patrol significant locations within their jurisdiction may not necessarily need to go through 

every back and side road to locate the intoxicated drivers. Giving patrol officers a radius of 0.1 to 0.2 

miles may be more forgiving for the application of locating intoxicated drivers. ArcGIS is used to locate 

all network locations for each radius with the “select by location” tool. By using this tool with the 

selection method set at “within a distance,” a buffer is created around the selected layer (95% or 99% 

confidence level network locations) at the specified radius to select all the 90% confident network 

locations within the specified radius. The proportion of 90% confident network locations that are 

located within each radius of the 95% and 99% confident network locations may be seen in Table 6.3.3. 
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Table 6.3.3: Proportion of 90%Confident Network Locations in Each Radius of 95% and 99% Confident Network 

Locations 

 

0.01 0.05 0.1 0.15 0.2 0.25

Franklin 857 66% 67% 69% 71% 76% 76%

Summit 398 46% 48% 51% 55% 58% 63%

Ross 111 16% 16% 17% 17% 18% 18%

0.01 0.05 0.1 0.15 0.2 0.25

Franklin 857 85% 86% 88% 89% 91% 92%

Summit 398 83% 84% 85% 88% 90% 92%

Ross 111 71% 72% 73% 73% 74% 74%

Note: This table shows the proportion of 90% confident network locations within each radius of the 95% and 

95% confident network locations.

Proportion of 90% Confident Network Locations in Each Radius around the 95% Confident Network Locations

County 0.9
Radius Distance (miles)

County 0.9
Radius Distance (miles)

Proportion of 90% Confident Network Locations in Each Radius around the 99% Confident Network Locations

Again, these tables represent the proportion of 90% confident network locations within each radius of 

the 95% and 99% confident network locations. The proportions for the 99% confident network locations 

are much lower than 95% confident network locations. This is a result of the lesser amount of 99% 

confident network locations, however this may also be indicative of which confidence level to use. Ross 

County shows the lowest relationships for both confidence levels, with a maximum proportion of 90% 

confident network locations located anywhere near the 99% confident network locations equal to 18%. 

Meaning if officers were to patrol locations within 0.2 miles of the 99% confident network locations, 

they will only pass through 18% of the total significant areas of Ross County. Although the 99% confident 

network locations are the most significant, with the highest chances of a presence of intoxicated drivers, 

the 90% and 95% confident network locations are still significant. Essentially 82% of the total significant 

area in Ross County will be “missed” by patrol officers, leaving room for people to drive intoxicated 

without getting caught. Similarly, Summit County has a fairly low relationship of 90% confident network 

locations to 99% confident network locations. Officers responsible for locating intoxicated drivers in 

Summit County will patrol 58% of the total significant areas when accounting for a 0.2 mile radius, 

leaving 42% of the total significant areas without patrols. 

The comparison of 90% confident network locations to 95% confident network locations in Table 6.3.3 

appears to be much more reliable in patrolling for intoxicated drivers. Ross County officers patrolling the 

95% confident network locations have a minimum of 71% coverage of the total significant area 

(compared to the 16% for the 99% confident network locations), which then increases up to 74% for a 

larger radii. This allows officers to patrol much more of the significant area, resulting in greater chances 

of locating intoxicated drivers. Franklin and Summit County have very similar results with a minimum of 

85% and 83% coverage, respectively, of the total significant area. As the radius increases, the coverage 

increases up to 92% for both counties, leaving only 8% of the total significant area untouched by patrol 
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officers. Officers patrolling the 95% confident network locations for Franklin and Summit Counties may 

be much more accurate in locating intoxicated drivers, while keeping the amount of network locations 

reduced from the 90% confidence level. Sending officers to patrol the lesser locations of the 95% 

confidence level, which are also more significant than the 90% confidence level, may significantly reduce 

the cost of manpower and time it takes to patrol these locations. 

6.4 CONCLUSION 

This research shows statistically significant locations that may be used by patrol officers to reduce the 

amount of alcohol-related crashes by locating areas where intoxicated drivers are likely to drive. Officers 

may improve the effectiveness in their saturation patrols by patrolling these locations. Given local 

indicators of spatial association with three different levels of significance, individual points are located 

that show significant areas where intoxicated drivers are likely to be present. This research was able to 

narrow down the total significant locations to provide officers with the most significant areas to patrol 

while accounting for limited budgets. 

The 95% confident network locations appear to be the most reliable network locations to use when 

patrolling for intoxicated drivers. Every point in these locations has either a 5% or 1% chance of not 

being a significant location where intoxicated drivers are present. Although the amount of these 

locations is reduced, they are present throughout most significant areas in each county. Since the 

number of 95% confident network locations is lower, the amount of manpower required to patrol these 

locations in a given shift time may be less than the amount required covering the total amount of 

significant locations. These locations also account for the two most significant confidence levels, 

indicating that the chance of locating intoxicated drivers is higher. Sending officers to patrol the 95% 

confident network locations may yield increased effectiveness in the ability to locate more intoxicated 

drivers, as well as increased efficiency in spending the funding provided by the State of Ohio. 

It has been proven that the use of enforcement strategies, specifically high visibility and saturation 

patrols, produce reductions in alcohol-related crashes. This research shows that sending officers to 

patrol 95% confident network locations may have the most effective results in locating intoxicated 

drivers. Additionally, these network locations remain significant while considering the limited funding of 

jurisdictions. 
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CHAPTER 7:  COMPARISON OF TRADITIONAL CORRIDOR BASED 

ENFORCEMENT WITH ROUTE OPTIMIZATION OF HOT SPOT 

ANALYSIS 

7.1 INTRODUCTION 

In 2014, 31% of the all fatal crashes in the state of Ohio involved at least one alcohol-impaired driver 

(NHTSA, 2016).  The trend of alcohol-related crashes and alcohol-related fatalities is a problem not only 

in the state of Ohio, but one which faces the nation as a whole. From the late 1980’s through the early 

1990’s, there was a steady reduction in the percentage of alcohol-related fatalities. Since 1994, the rate 

has steadily remained above roughly 30%. While a large scale study completed in 1988 by Moskowitz 

and Robinson (1987) found the effects of alcohol on driving related skills, improvements in the coming 

years were a result of joint efforts between whole communities, engineers, and law enforcement, and 

many studies outlining advances in methods to reduce alcohol-related crashes and fatalities. 

Studies on the geospatial patterns and trends of alcohol-related crashes are relevant in determining 

methods to reduce the amount of alcohol-related crashes. In 1983, Colón and Cutter used multiple 

regression to determine relationships between motor vehicle accidents and alcohol availability (Colón 

and Cutter, 1983). Several studies followed in determining spatial relationships between alcohol-related 

crashes to help refine national and regional trends in alcohol-related crashes (Gary et al., 2003; Ponicki 

et al, 2013).  

In addition to geospatial work, there have been several studies which focus on law enforcement and 

improving their effectiveness as crash countermeasures. Dedicated impaired driving saturation patrols 

are identified by NHTSA as highly effective, easily implementable proven countermeasures (Goodwin et 

al., 2015). While the effectiveness of this practice has been proven, there have been several recent 

studies focused on improving the efficiency and implementation of these patrols in varying capacities 

and situations (Fell et al., 2014; Sanem et al., 2015; Maistros and Schneider IV, 2016, accepted, not yet 

published). Another important aspect of impaired driving patrols is the specific type of patrol that is 

conducted. Different patrols options include corridor enforcement, where officers stick to specific roads 

that are over represented in alcohol-related crashes, and saturation patrols, during which officers work 

specific areas that are over represented in alcohol-related crashes. Of the several methods for defining 

high crash areas for saturation patrol, Data Driven Approaches to Crime and Traffic Safety (DDACTS) is a 

method developed by NHTSA which focuses on the use of spatial clustering. Location based crashes may 

be used in order to find spatial relationships, commonly known as hot spots, which show areas of 

significance. Other papers have gone on to use spatial clustering as a means to define route points 

(Maistros and Schneider IV, 2016). 
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The objective of this chapter is to compare traditional corridor enforcement patrols to new route 

optimized segments using points defined through hot spot analyses. This is completed through the use 

of Esri’s ArcGIS Vehicle Routing Problem. Once the routes for each method are modeled, they will be 

compared by locating the total amount of alcohol-related crash locations passed by each route. Officers 

passing through more alcohol-related crash locations per mile or time may be more effective in 

ultimately reducing the amount of alcohol-related crashes (Fell et al., 2014). 

7.2 DATA 

The data sources for this study include crash records populated from the state of Ohio OH-1 crash 

reports (ODPS, 2015), the Ohio Department of Transportation (ODOT) Geographic Information Systems 

(GIS) roads layer (ODOT, 2016), and United States Census estimates information (United States Census 

Bureau, 2015). Using these three databases, the research team selected Franklin, Summit and Ross 

counties for analysis. All alcohol-related crashes in each county from January 1, 2012 through April 9, 

2015 are included in the analysis.  

Franklin County was selected due to its high population (greater than 1 million people), it encompasses 

the large metropolitan area of the City of Columbus, and its high number of alcohol-related crashes. 

Summit County was selected due to its large urban areas with a population greater than 500,000 people 

and a significantly high number of alcohol-related crashes. In contrast, Ross County is a predominantly 

rural county with a total population less than 100,000 people, and has a road network a quarter the size 

of Franklin County. Historically, Franklin County and Summit County are both in the top 10 counties 

statewide with the highest number of alcohol-related fatalities per year. A summary the general 

characteristics of each of the three counties may be seen in Table 7.2.1. 

Table 7.2.1: Comparison of Franklin, Summit, and Ross Counties 

 

County Population Population Density (per sq. mi.) Lane Miles Total Alcohol-Related Crashes

Franklin 1,251,772 2,186 5,670 4,051

Summit 541,968 1,313 3,608 1,805

Ross 77,170 113 1,429 334

County Comparison

Note: County Population and Population Density determined from United States Census Bureau Quick Facts. 

Lane Miles determined from Ohio Department of Transportation ArcGIS Roads Layer.

Total Alcohol-Related Crashes determined from Ohio Department of Public Safety OH-1 Crash Reports.

As shown in Table 7.2.1, there is a wide range of demographics, road networks and alcohol-related 

crashes between these three counties. This chapter will use these counties as case studies as a 

demonstration for a new methodology that law enforcement agencies may use to help curb alcohol-

related crashes. 
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7.3 METHODOLOGY 

The DDACTS initiative that was developed by NHTSA encourages local law enforcement to develop data 

driven approaches to address high crime and crash areas. Within traffic enforcement, agencies may use 

various strategies which may include sobriety checkpoints, saturation patrols, and multi-jurisdiction, 

which are multi-agency short-term high visibility details.  

This chapter focuses specifically on the improvement of saturation patrols which may be used during 

high visibility enforcement overtime (HVEO) patrols. In Ohio, Franklin and Summit counties qualify for 

additional state funding for impaired driving HVEO programs due to their high numbers of alcohol-

related fatalities. Traditionally in Ohio, saturation patrol allows the local agency the maximum flexibility 

as to when and where to implement their enforcement detail. While the flexibility of generic saturation 

patrols allows officers to work a variety of areas, it does not always provide the direction and guidance 

to address the greatest occurrences of impaired driving. 

7.3.1 Methodology One: Corridor Enforcement  

One approach to improve saturation patrol is through the development of corridor specific routes. The 

fundamental difference between saturation and corridor patrols is corridor enforcement requires the 

officer to patrol one specific segment of road. This segment is typically defined by either the number of 

alcohol-related arrests or the number of alcohol-related crashes. Typically an agency will select the top 

5, 10 or 15 roads with the highest numbers of alcohol-related crashes and will only patrol these 

segments. In this chapter, the corridors for the three counties are defined as the 15 road segments with 

the highest number of alcohol-related crashes within each county. 

7.3.2 Methodology Two: Route Optimized Hot Spot Analysis  

The second methodology used within this chapter is the development of new route optimized segments 

using hot spot analysis (HSA). HSA is a robust method of cluster analysis which aggregates crashes based 

on location and statistical significance. Crashes that lie within a defined distance of one another are 

combined so to for a new aggregate point halfway between the two original crashes with a count value 

representing the two original crashes. This process is repeated until there are no more crashes within 

the re-defined distance of the original crash point. Once all crash locations are analyzed for aggregation, 

local and global cluster analysis is performed. Local clustering analysis determines the significance of the 

clustering at an individual point as described by Ord and Getis (1995), Wulder and Boots (1998), 

Prasannakumar et al. (2011), and Lees (2006). Global clustering is performed to determine if the 

aggregate points are statistically clustered in relation to one another within the study area. For this 

study, the area is defined by the three counties for which the analysis is performed. HSA has proven to 

be effective in the crash identification and in directing the efforts of law enforcement (Carrick et al., 

2014; Maistros et al., 2014; Ratcliffe and McCullagh, 2011).  
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With the improvement of geospatial crash locations, HSA continues to be refined and accepted by 

practitioners and researchers. One problem with HSA is it only defines the problem area, it does not 

provide guidance on how to best patrol within that area. To help address this limitation, this chapter will 

utilize the HSA analysis and will develop a route optimization model within the HSA. The hot spot route 

optimization (HSRO) model is developed first by defining the network locations or desired areas for 

patrol. For this chapter, the network locations are determined by the output of the HSA. Anselin’s 1995 

study (Anselin, 1995), explains how the Gi and Gi* statistics from the results of HSA may be used to 

identify individual points, or network locations, within the output of the HSA known as local indicators of 

spatial association. These individual network locations are able to give a statistical significance to each 

output on the hot spot map. Various levels of significance are often identified to show the confidence 

that any output may reject the null hypothesis, which is that the hot spot is not significant. These levels 

include 99% confidence, 95% confidence, and 90% confidence, or showing no significance. 

Since the network locations in this chapter are based off alcohol-related crash locations, a point with a 

95% confidence indicates that there is a 5% chance that location does not represent a location where 

alcohol-related crashes may typically occur significant. Similar relationships may be seen from De Vlack 

et al. (2016), who explain the significance of hot and cold spots when analyzing the substitutability of 

recreation areas in Belgium. Additionally, Johnston & Ramachandran (2014) show how the use of local 

indicators of spatial association are able to reject the null hypothesis of homogeneity, while also utilizing 

these data for their focus of stated preference welfare estimates. For the purposes of this chapter, local 

indicators of spatial association that are at or above 95% confidence are identified and utilized as 

network locations to be used in the route optimization model. These points may be seen as the black 

dots in Figure 7.3.1. When patrolling the 95% confident network locations, each of those points have a 

95% chance that the alcohol-related crash location is significant, giving officers a greater chance of 

locating intoxicated drivers.  

Once the network locations, seen as the black dots in Figure 7.3.1 are determined Esri’s ArcGIS Vehicle 

Routing Problem may be used to create a HSRO model based on crash locations.  In this study, the 95% 

confident local indicators of spatial association are utilized as the network locations. These are the areas 

that the patrol routes for officers will be guided to while patrolling for intoxicated drivers. At these 

locations, there is a 5% chance that each area is not significant, allowing for a 95% chance that the point 

is significant and officers may be more successful in locating intoxicated drivers. Additionally by 

patrolling these locations, officers may be able to show more of a presence in areas where intoxicated 

drivers may be more likely to drive. Fell, et al. (2015) explains how less people are likely to drive 

intoxicated in communities where enforcement of intoxicated driving is more prevalent. Patrol cars are 

also added into the system. The patrol cars are modeled so they are able to travel through any part of 

the county.  

To determine the results, the model must first route the patrol cars through the identified corridors. The 

total time that is calculated for each individual route is then used as a restriction for the HSRO model. By 
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restricting the total time for the HSRO model, each individual patrol car will travel the same amount or 

less time than when patrolling the corridors. Restricting the total time of each route allows for a similar 

comparison between the current method of corridor enforcement and the new method of HSRO. 

7.3.3 Comparison of Corridor Enforcement and HSRO Analysis Parameters  

As stated previously, the main goal of this chapter is to compare two methodologies for improving 

alcohol enforcement. In order to achieve this main goal, the two methodologies, as best as possible, 

must use similar parameter constraints such as total travel time, total time, and number of patrol cars. 

In this chapter the corridor enforcement model, methodology one, is implemented first. The results, 

travel time, total time, and number of patrol cars from the corridor enforcement methodology are then 

used as parameter inputs for the hot spot route optimization model. The parameters for both models 

are determined by the corridors, and they must match. This is to allow for a similar comparison between 

the current method of corridor enforcement and the new method of hot spot route optimization. 

Figure 7.3.1, is developed using similar parameter constraints between the two methodologies. This 

figure shows the top 15 corridors per county as well as the 95% hot spots network locations. 

Figure 7.3.1: Corridor & Hot Spot Patrol Areas for Franklin, Summit, and Ross Counties 

Note: The dots are based on the output of the HAS, showing 95% confident local indicators of spatial 

association. Additionally, the lines represent the top 15 corridors in each county, as previously identified. 

Figure 7.3.1 shows the base relationship of the HSRO (dots) versus the top 15 corridors representing 

roads with the most alcohol-related crashes for each county. The corridors will first be modeled in order 

to determine what officers may currently be patrolling. The results from the corridor routes are then 

used to model the statistically significant HSRO. The final product is a map of the corridor and HSRO 

methods showing the routes for when three, five, and seven patrol cars are deployed, each route 
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depicted from a different color gradient. The corridors are shown first in order to view what officers may 

currently be patrolling, followed by the HSRO to show the new method of what officers may patrol to 

further reduce the amount of alcohol-related crashes. 

7.4 RESULTS 

The final results of the map include total time, total travel time, and total miles. It may be noted that 

there is a clear difference between the total time and total travel time. The total travel time indicates 

how long the officers are patrolling each route without any stops. Similarly, the total miles show the 

amount of miles each officer drives on their given route. The total time incorporates a stop time, which 

simulates the pullovers officers make. In order to simulate this, a service time is added onto each 

network location, the summation of which represents the amount of time officers are pulled over per 

hour. As a result, the total cycle time for each patrol route is a realistic vision of what may occur in the 

field. Assuming that patrol officers generally have 1.5 stops per hour and an average stop time for each 

pullover may be set at 15 minutes. The service time is averaged over the total amount of network 

locations in each county, and may be seen in equation 7.1: 

𝑡𝑠 =
(𝜆𝑝)∗(𝑡𝑝)

𝑁𝑙
∗ 𝑁𝑝 (7.1) 

where ts represents the service time, λprepresents the rate of pullovers, tprepresents the average time 

of pullovers, Nl represents the number of network locations per county, and Np represents the number 

of patrol cars in given scenario. For example, if one officer were to patrol their route and it took one 

hour to patrol, the total service time may represent about 22.5 minutes (for 1.5 stops at exactly 15 

minutes each). However, this time may vary since stops are not always exactly 15 minutes each and 

officers may not always pullover exactly 1.5 people per hour. The total travel time and total miles are 

used to determine the total amount of alcohol-related crash locations passed per mile of travel as well 

as the amount of alcohol-related crash locations passed per total time of travel. The final corridor and 

hot spot patrol maps of Franklin County may be seen in Figure 7.4.1. Additionally, the total times, total 

travel times, and total miles for each patrol in each scenario may be seen in Table 7.4.1. 



80 

Figure 7.4.1: Optimized Corridor Routes (top) and Hot Spot Routes (bottom) for Franklin County for 3, 5, and 7 

patrol cars respectively. 
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Table 7.4.1: Total Miles, Total Time and Total Travel Time for Franklin County when 3, 5, and 7 Patrol Cars are 

Deployed 

 

Miles Total Time Travel Time Miles Total Time Travel Time Miles Total Time Travel Time

Car 1 50 106 83 29 80 60 28 69 43

Car 2 51 98 78 38 72 47 25 69 45

Car 3 48 110 83 30 80 60 30 62 44

Car 4 - - - 36 76 49 27 65 44

Car 5 - - - 31 65 44 27 58 34

Car 6 - - - - - - 22 68 46

Car 7 - - - - - - 34 66 43

Car 1 43 109 82 28 80 54 23 64 36

Car 2 48 104 86 32 80 58 25 63 42

Car 3 55 93 85 34 80 60 27 67 46

Car 4 - - - 41 76 61 28 69 46

Car 5 - - - 41 70 60 29 64 46

Car 6 - - - - - - 28 68 47

Car 7 - - - - - - 34 57 47

3 Cars 5 Cars 7 Cars

Franklin 

County 

Corridor 

Route 

Results

Franklin 

County 

HSRO 

Results

Note: The miles and speed of travel used to find the Miles of each route and Travel Time are calculated based on 

the ArcGIS Ohio Roads Layer used in the model. The Total Time incorporates an assumed stopping time at each 

network location in order  to account for the rate of 1.5 pullovers per hour. 

The optimized corridor routes have a maximum total time of 110, 80, and 69 minutes for three cars, five 

cars, and seven cars, respectively. These travel time inputs were used as the maximum time restrictions 

for the HSRO model. The final HSRO model requires the patrol to go through as many network locations 

as possible in the given time restrictions from the corridor routes. Franklin County has similar results 

between the corridor and HSRO method. Since the corridor times are restricting the HSRO model, the 

HSRO model utilizes as much of the time as possible in order to pass through the most network 

locations. This ensures that officers have the optimum amount of presence in traveling through 

significant locations when patrolling for intoxicated drivers.  

The overall comparison between the two methodologies show that the corridor enforcement is spread 

out throughout the entire county while the HSRO model enforcement detail is more localized through 

the metropolitan areas. It may also be noted that the location of the routes in the HSRO vary for each 

amount of patrol cars modeled. This is due to the time restrictions from the corridor routes not allowing 

the patrol cars in the HSRO model to travel through every area that the hot spot locations are present. 

This may be beneficial as it does not require patrol officers to drive throughout the entire county. 

Instead, officers may stay in few central locations while continuing to have the same effect on presence 

and effectiveness of patrolling for intoxicated drivers. 

The same methodology is repeated for Summit County (Figure 7.4.2) and Ross County (Figure 7.4.3). 

Similar trends may be seen in both counties where the corridors often span throughout the county and 

the hot spot locations, based off the statistically significant areas of hot spots, are located in one general 
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area. The optimized corridor and hot spot patrol routes for Summit County may be seen in Figure 7.4.2. 

Additionally, the total times, total travel times, and total miles for each patrol in each scenario may be 

seen in Table 7.4.2. 

Figure 7.4.2: Optimized Corridor Routes (top) and Hot Spot Routes (bottom) for Summit County for 3, 5, and 7 

patrol cars, respectively. 
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Table 7.4.2: Total Miles, Total Time and Total Travel Time for Summit County when 3, 5, and 7 Patrol Cars are 

Deployed 

 

Miles Total Time Travel Time Miles Total Time Travel Time Miles Total Time Travel Time

Car 1 48 96 76 40 70 48 27 59 38

Car 2 48 96 75 28 71 48 16 54 27

Car 3 48 93 67 36 71 45 30 55 32

Car 4 - - - 28 70 44 20 56 30

Car 5 - - - 26 64 49 17 61 44

Car 6 - - - - - - 34 62 37

Car 7 - - - - - - 24 61 42

Car 1 49 96 75 19 59 36 19 49 30

Car 2 44 96 73 32 69 47 24 47 35

Car 3 40 92 66 22 70 47 15 47 30

Car 4 - - - 24 66 42 16 43 27

Car 5 - - - 38 68 47 15 49 29

Car 6 - - - - - - 16 49 32

Car 7 - - - - - - 32 49 38

Note: The miles and speed of travel used to find the Miles of each route and Travel Time are calculated based on 

the ArcGIS Ohio Roads Layer used in the model. The Total Time incorporates an assumed stopping time at each 

network location in order  to account for the rate of 1.5 pullovers per hour. 

3 Cars 5 Cars 7 Cars

Summit 

County 

Corridor 

Route 

Results

Summit 

County 

HSRO 

Results

For Summit County, the total amount of time required for officers to patrol the HSRO model is less than 

what is required for the corridor routes. This occurs because the corridors span much more throughout 

the county than the hot spots, requiring more time to patrol the corridors than the hot spot locations. 

As a result, officers patrolling the routes for the HSRO model travel consistently less time and miles than 

the when patrolling the corridors. This may prove to be an interesting result if officers are able to pass 

through more alcohol-related crash locations per mile and per time in the HSRO model than the corridor 

model. This may be a significant result because it may indicate that officers are able to be more efficient 

in patrolling for intoxicated drivers. 

As seen in Table 7.4.2, the maximum total time utilized in Summit County from the corridor routes is 96, 

71, and 62 minutes for three, five, and seven cars respectively. Again the travel time and number of cars 

patrolling in the corridors are used as maximum travel time and number of cars patrolling for the HSRO 

model. This is applicable for when three patrol cars are deployed, however when five patrol cars and 

seven patrol cars are deployed, the maximum amount of time needed for the hot spot patrols is less 

than the maximum amount of time allowed by the corridor patrols. This means that all statistically 

significant areas are able to be patrolled in the hot spot patrol in the same amount of time or less than 

the corridor patrols. If officers are able to patrol in the HSRO areas in less time than the corridor areas, 

while also traveling through more alcohol-related crash locations, officers may be more effective in 

showing a presence and stopping intoxicated drivers in less time than when patrolling corridors. 
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Similar results are seen for Ross County in Figure 7.4.3 while the total times, total travel times, and total 

miles for each patrol in each scenario may be seen in Table 7.4.3. Ross County is similar to Summit 

County in that the corridors tend to span throughout the whole county, while the hot spot areas are 

located in one central location. This again allows the hot spot patrols to consistently require less time to 

travel through all areas than the corridor patrols. If the hot spot patrols are able to pass through more 

alcohol-related crash locations per mile than the corridor patrols, it may be more beneficial for officers 

to conduct patrols through HSRO. 

Figure 7.4.3: Optimized Corridor Routes (top) and Hot Spot Routes (bottom) for Ross County for 3, 5, and 7 

patrol cars, respectively. 
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Table 7.4.3: Total Miles, Total Time and Total Travel Time for Ross County when three, five, and seven cars 

Patrol Cars are Deployed 

  

Miles Total Time Travel Time Miles Total Time Travel Time Miles Total Time Travel Time

Car 1 77 162 134 43 102 73 32 104 87

Car 2 112 204 182 68 129 105 47 99 84

Car 3 109 205 188 74 127 105 50 104 80

Car 4 - - - 52 110 91 52 101 79

Car 5 - - - 56 120 102 52 97 73

Car 6 - - - - - - 54 91 66

Car 7 - - - - - - 50 87 59

Car 1 29 74 41 18 56 29 5.1 48 31

Car 2 30 57 57 14 51 29 19 50 30

Car 3 35 59 59 21 57 34 14 49 29

Car 4 - - - 19 55 33 16 50 28

Car 5 - - - 22 58 38 15 48 26

Car 6 - - - - - - 15 48 22

Car 7 - - - - - - 16 41 11

3 Cars 5 Cars 7 Cars

Ross 

County 

Corridor 

Route 

Results

Ross 

County 

HSRO 

Results

Note: The miles and speed of travel used to find the Miles of each route and Travel Time are calculated based on 

the ArcGIS Ohio Roads Layer used in the model. The Total Time incorporates an assumed stopping time at each 

network location in order  to account for the rate of 1.5 pullovers per hour. 

As seen in Table 7.4.3, the maximum total time utilized by the corridors in Ross County is 205, 129, and 

104 miles for three, five, and seven cars, respectively. When considering the HSRO model, the maximum 

total time needed to patrol through all network locations for three, five, and seven cars is 74, 58, and 50 

minutes. The major difference comes when noticing that the HSRO model is located in the one central 

location while the corridors span throughout the county. When using the HSRO model to patrol, officers 

may be able to create much more of a presence in the significant areas of the county, as opposed to 

traveling through the whole county and potentially only being able to travel their respected route once 

or twice during a given three or four hour shift.  

After the maps have been optimized for the corridor and HSRO patrols, the total miles traveled by each 

car, as well as the total time each patrol car took to complete its respective route is recorded. 

Additionally, the total amount of alcohol-related crash locations passed through by each route system is 

recorded. This ensures that if two patrol cars are driving along the same road for a period of time, each 

alcohol-related crash location passed through by each car is recorded one time only. 

In each county, the total time and total miles taken to patrol the corridors and HSRO models differ. In 

order to determine which method may be more efficient, the total crashes per mile, as well as total 

crashes per total time (in minutes) are calculated. The amount of alcohol-related crash locations is 

currently used as a reference for patrolling for intoxicated drivers. In this case, the patrol route that is 

able to pass through more crash locations per mile or more crash locations per minute may be seen as 

the most efficient route. These results may be seen in Table 7.4.4. 
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Table 7.4.4: Total Crashes per Mile and Total Crashes per Total Time Comparison between Corridor and Hot Spot 

Patrols for Franklin, Summit and Ross Counties 

Corridor HSRO Corridor HSRO Corridor HSRO

Total Crashes per Mile 5.79 5.98 5.51 5.51 4.70 5.02

Total Crashes per Total Time (minutes) 2.75 2.85 2.42 2.51 1.98 2.15

Total Crashes per Mile 3.07 3.48 2.61 3.44 2.74 3.42

Total Crashes per Total Time (minutes) 1.55 1.63 1.19 1.40 1.13 1.41

Total Crashes per Mile 0.56 1.02 0.55 1.03 0.49 1.02

Total Crashes per Total Time (minutes) 0.29 0.51 0.27 0.35 0.24 0.31

Ross 

County

Note: Total Crashes per Mile is found by dividing the total amount of alcohol-related crash locations passed in each fleet 

by the total miles traveled in each fleet. Total Crashes per Total Time is found by dividing the total amount of alcohol-

related crash locations passed in each fleet by the Total Time recorded for each fleet.

5 Cars 7 Cars3 Cars

Franklin 

County

Summit 

County

 

Franklin County, the most urban county of the three case studies also has the most crashes in the 

studied time frame with 4051 located alcohol-related crashes. While patrolling the HSRO model, more 

alcohol-related crash locations per mile were passed through with three and seven cars than the 

corridor patrols, however when five cars were patrolling, the amount of alcohol-related crash locations 

passed is the same as the corridor patrols. Though there is no difference with five patrol cars, the 

amount of alcohol-related crash locations passed through per time is greater for the HSRO patrols than 

the corridor patrols. Additionally, HSRO patrols passed through more alcohol-related crash locations per 

minute for three and seven patrol cars than the corridor patrols. 

These results are very similar for Summit and Ross Counties. Summit County has a total of 1,805 alcohol-

related crashes. The total alcohol-related crash locations passed per mile is significantly higher for the 

HSRO as well as the total crash locations passed per total time. With this knowledge and the knowledge 

that the amount of the routes for the HSRO model are shorter for five and seven cars in Summit County, 

it may be viable to conclude that officers may be more efficient in patrolling using the HSRO model. 

Ross County, with 331 total alcohol-related crashes again shows similar results to Summit County. The 

total amount of alcohol-related crash locations passed per mile in the HSRO model is at least doubled 

for each amount of officers patrolling than the corridors. Additionally the total amount of alcohol-

related crash locations passed per time is greater for the HSRO model than the corridor in each 

situation. Ross County is very similar to Summit County in that each result for the HSRO model shows 

either less time patrolling or more alcohol-related crash locations passed by the patrols. Given these 

results, patrol officers are able to travel less distance and less time for HSRO patrols while covering not 

only more alcohol-related crashes, but also areas that have been found to be statistically significant 

from the hot spots. 

When studying the results of Franklin County, the results are in favor of HSRO patrols in eleven out of 

twelve study areas. Similarly, the results of Summit and Ross Counties are in favor of the HSRO patrols in 

all twelve of the study areas. Fewer miles are traveled, and more alcohol-related crash locations are 



87 

passed per mile and minute of patrolling. Using Franklin County as a representative of urban counties, 

and Ross County as a representative of rural counties, it may be possible to conclude that HSRO 

patrolling may be the most effective method when patrolling for intoxicated drivers. 

Ultimately, the results for the HSRO method of patrolling are favored. When considering the amount of 

crashes passed per mile, this means that officers patrolling the HSRO model will pass more crash 

locations in fewer miles than the corridor routes. Additionally, the results show that officers will pass 

more alcohol-related crash locations in less amount of time for the HSRO method than the corridor 

method. By not only traveling through more alcohol-related crash locations, but also the statistically 

significant locations, as defined by the hot spots, officers may be more available to stop intoxicated 

drivers. Using the theory that a presence of enforcement reduces the amount of intoxicated drivers, as 

explained by Fell et al.(2014), Sanem et al. (2015), Kenkel (1993), and Tay (2005), the hot spot 

methodology proves to be the most effective, as well as most promising for ultimately reducing the 

amount of alcohol-related crashes. 

7.5 CONCLUSIONS 

With continued efforts going towards reducing the amount of alcohol-related crashes comes new 

research. The goal of this chapter is to determine whether patrolling for intoxicated drivers is more 

effective when conducting HSRO patrols or corridor patrols. Corridors are found by locating the top 15 

road segments with the most alcohol-related crash locations during the studied time period for Franklin, 

Summit, and Ross counties. HSRO patrol locations are found using statistically significant hot spot 

locations. By using Esri’s ArcGIS program to optimize routes for the three counties for corridor patrols 

first, then using the results to compare HSRO patrols, it is possible to determine which method may be 

more efficient to use. Table 5 shows the results when comparing the amount of alcohol-related crash 

locations passed per mile, as well as amount of alcohol-related crash locations passed per time. This 

allows for an equal comparison when the corridor models have more travel time and travel more miles 

than the HSRO models. The model that is able to travel through more alcohol-related crash locations per 

time and per mile may be seen as the most effective. By passing through more alcohol-related crash 

locations per mile and per time, officers may be able to locate more intoxicated drivers and create more 

of a presence to reduce the amount of alcohol-related crashes. Overall, hot spot patrols produced better 

outcomes, often allowing the patrols to drive less miles and less time but pass through more alcohol-

related crash locations. Not only are the HSRO patrols passing through more alcohol-related crash 

locations per mile traveled, but they are also patrolling the statistically significant locations produced 

from hot spot analyses. This research shows that when patrolling for intoxicated drivers, it may be 

overall more beneficial to use the HSRO method. The HSRO method not only passes through more 

alcohol-related crash locations, but it also travels through the statistically significant areas as identified 

through HSA. This may yield to locating more intoxicated drivers, and ultimately reducing the amount of 

alcohol-related crashes. 
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CHAPTER 8:  USE OF FAILURE PROBABILITY MODELS TO JUSTIFY 

NEW METHODS OF PATROLLING 

8.1 INTRODUCTION 

Driving while intoxicated continues to be a problem in the United States despite the efforts of 

researchers and law enforcement officers. Though the amount of alcohol-related crashes has remained 

consistent since 1999 (NHTSA, 2014), studies have continued in order to find some form of deterrence 

for drinking and driving (Carrick and Washburn, 2011; Fell et al., 2015); Sanem et al., 2015). Studies have 

continued to find some form of deterrence for drinking and driving, such as increased enforcement and 

mass media campaigns (Tay, 2005; Kenkel, 1993; Blais et al., 2015; Elder et al., 2004), however the 

amount of alcohol-related crashes has remained consistent since 1999. 

So far, this research has analyzed proposed methodologies to determine ways to reduce the amount of 

alcohol-related crashes considering limited resources. Traditional methods of corridor enforcement 

have been compared with hot spot route optimization (HSRO) models, which are developed from hot 

spot analyses. In order to determine which method of patrolling is most efficient, the amount of alcohol-

related crash locations passed per minute and per mile is used as a performance metric. Providing time 

and cost restrictions through the use of failure probability models may help to further justify the 

application of these methods. Failure probability is a proven method to determine the chance of failure 

of different scenarios and is widely used, whether it be for structural applications, such as pipeline 

failures (Yuhua and Datao, 2005; Dundulis et al., 2016), or chances that a specific treatment of asphalt 

will fail after a given time (Dong and Huang, 2015). 

This research will utilize failure probability models to compare the traditional method of corridor 

patrolling to the new method of patrolling through HSRO. The failure probability presented will simulate 

a realistic application of these methods of patrolling in order to determine which may be the most 

efficient method to reduce the amount of intoxicated drivers. Two types of failure modes are used to 

compare the different methods of patrolling. The first type of failure will be the chance that an officer is 

unable to complete each consecutive cycle of their patrol, while the second type of failure will indicate 

the chance that officers patrolling through each consecutive cycle are more costly than the chance of 

pullovers themselves. The method of patrolling that is able to complete more cycles or has lower 

chances of failure for each consecutive cycle may be the more efficient method to use when patrolling 

for intoxicated drivers. 

While the use of failure probability may immediately determine which method of patrolling is most 

efficient, it may also be used in the future to help law enforcement officials and captains in decision 

making processes by providing a guide of the amount of resources that may be used in patrolling on a 

given night. These models may be especially beneficial during the Drive Sober or Get Pulled Over 

(DSOGPO) campaigns. DSOGPO campaigns typically occur between mid-August through Labor Day, and 
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again through the late November and December (NHTSA, 2016). During this time, high visibility 

enforcement officers (HVEO) are sent to patrol for intoxicated drivers through saturation patrols and 

sobriety check points. By using failure probability models, captains may be able to more effectively 

guide their officers to areas where intoxicated drivers are more likely to be present. 

As useful as these failure probability models may be for law enforcement officials and captains, they 

may be seen equally as useful on the larger scale of communities. The DSOGPO campaign is not 

restricted to people involved with law enforcement. Mass media campaigns are also utilized during this 

time to advertise the dangers of impaired driving through funding supplied by the United States 

Department of Transportation (NHTSA, 2013). The results of the failure probability models may help 

captains and volunteers determine better locations to promote campaigns against intoxicated driving. 

For example, if the models show one method of patrolling is more effective than the other, these 

organizations may use the locations of the more effective model for their media outlets.  

8.2 DATA 

The data sources for this study include of crash records populated from the state of Ohio OH-1 crash 

reports (ODPS, 2015), the Ohio Department of Transportation (ODOT) Geographic Information Systems 

(GIS) roads layer (ODOT, 2016), and United States Census estimates information (United States Census 

Bureau, 2015). Using these three databases, the research team selected Franklin, Summit and Ross 

counties for analysis. All alcohol related crashes in each county from January 1, 2012 through April 9, 

2015 are included in the analysis.  

Franklin County was selected due to its high population (greater than 1 million people), it encompasses 

the large metropolitan area of the City of Columbus, and its high number of alcohol related crashes. 

Summit County was selected due to its large urban areas with a population greater than 500,000 people 

and still has a high number of alcohol related crashes. In contrast, Ross County is a predominantly rural 

county with a total population less than 100,000 people, and has a road network quarter the size of 

Franklin County. Historically, Franklin County and Summit County are both in the top 10 counties 

statewide with the highest number of alcohol related fatalities per year. A summary the general 

characteristics of each of the three counties may be seen in Table 8.2.1 

Table 8.2.1: Comparison of Franklin, Summit, and Ross Counties 

 

County Population Population Density (per sq. mi.) Lane Miles Total Alcohol-Related Crashes

Franklin 1,251,772 2,186 5,670 4,051

Summit 541,968 1,313 3,608 1,805

Ross 77,170 113 1,429 334

County Comparison

Note: County Population and Population Density determined from United States Census Bureau Quick Facts. 

Lane Miles determined from Ohio Department of Transportation ArcGIS Roads Layer.

Total Alcohol-Related Crashes determined from Ohio Department of Public Safety OH-1 Crash Reports.
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As shown in Table 8.2.1, there is a wide range of demographics, road networks and alcohol related 

crashes between these three counties. This chapter will use these counties as case studies as a 

demonstration for a new methodology that law enforcement agencies may use to help curb alcohol 

related crashes. 

Additional data for this chapter are based on the HSRO and corridor results from the previous chapters. 

The total travel time of the individual patrol cars in each fleet and method of patrolling may be seen in 

Tables Table 7.4.1, Table 7.4.2, and Table 7.4.3. These results, as well as the number of network 

locations each patrol passes through on their respected routes will be directly used in the failure 

probability models. 

8.3 METHODOLOGY 

The main goal of this research is to reduce the amount of alcohol-related crashes in the state of Ohio 

through the improvement of overtime patrols. So far, this research has used hot spot maps created from 

alcohol-related crash locations to find local indicators of spatial association (LISA). It was determined 

that the LISA’s that represent a 95% confidence may be used as network locations in a vehicle routing 

problem for proposed method of HSRO. The proposed method of HSRO and traditional method of 

corridor patrolling are compared by finding the amount of alcohol-related crash locations passed per 

time and distance for when fleets of three, five, and seven patrol cars are routed through the counties. 

These results show one performance metric of which method of patrolling may be the most effective in 

reducing the amount of alcohol-related crashes. The remainder of this chapter presents a second 

performance metric to help determine which method of patrolling may be most optimal in reducing the 

amount of alcohol-related crashes. 

8.3.1 Failure Mode 1 

Failure probability is widely used to help determine the chances of system failure for a number of 

applications (Leon and Macías, 2005; Ahammed and Melchers, 1997). This research uses failure 

probability for two different applications.  The first application determines the chance that officers are 

unable to complete patrolling their route on each consecutive cycle that they patrol. This stems from 

the theory presented by Sanem, et al. (2015) where saturation patrols, among other forms of 

deterrence, are associated with less driving under the influence (DUI) violations. As a result, this 

research views officers who are able to complete more cycles of their patrol route as more effective in 

the overall cause of reducing the amount of alcohol-related crashes. 

In failure probability models, a limit state function (LSF) is used to define the failure of the system. The 

LSF may be generally defined by Equation 8.1: 

𝑙 = 𝐶 − 𝐷 (8.1) 
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where 𝑙 represents the LSF of the model, 𝐶 represents the capacity of the model, and 𝐷 represents the 

demand of the model. The demand for this first failure mode is represented by the patrol time, which is 

defined as the total time the officers take to patrol their respected routes. The capacity of this first 

failure mode is the working shift time, which will remain at a constant three hours for the purposes of 

this chapter. 

As the capacity model, or time of working shift, stays consistent throughout this first failure mode, the 

demand model varies and depends on a number of variables. A rate of pullovers has been incorporated 

throughout this research, and has a constant value of 1.5 pullovers per hour for each patrol car. Using 

this occurrence of pullovers, a Poisson distribution is completed over 100,000 simulations to simulate a 

different amount of pullovers in each scenario. By incorporating the Poisson distribution, variation is 

included in the system, allowing for a more realistic failure probability model. A time is then associated 

with each pullover that an officer makes, which is determined by assuming an average of 15 minutes 

and generating random numbers from an exponential distribution. Given the total amount of pullovers 

and their associated time for each simulation, the total time of pullovers for each mission is calculated 

as seen in Equation 8.2: 

ttp = ∑ 𝑡𝑝  (8.2) 

where ttp is the total time of pullovers in each patrol, and 𝑡𝑝 is the time of each individual pullover. 

Equation 8.2 is set up as a summation in order to account for the total time of pullovers in each 

individual simulation, or patrol. Once the total time of pullovers is determined for each mission, the 

total time of each patrol may be calculated as seen in Equation 8.3: 

Tm = nc ∗ tc + ttp   (8.3) 

where Tm is the total patrol time for each simulation, nc is the number of cycles the patrol car is able to 

fully complete throughout the duration of the shift, the tc is the amount of travel time the individual 

patrol car takes to complete its respected cycle, and the ttp is the total time the officer spent on 

pullovers for each simulated patrol. 

 Once the total time of each mission is calculated, the failure may then be calculated for each 

simulation using the equation of the LSF as a base equation for Equation 8.4: 

𝑓 = (𝑙 ≤ 0) = (𝑇𝑠ℎ − 𝑇𝑚 ≤ 0) (8.4) 

where 𝑓 is the failure of each simulation, 𝑙 represents the LSF, 𝑇𝑠ℎ is the shift time (three hours), and 𝑇𝑚 

is the patrol time for each simulation. When Equation 8.4 is a negative value, 𝑓 will be denoted as a one, 

indicating failure of the system. If the system does not fail, Equation 4 will be a positive value and 𝑓 will 

be denoted as a zero. In order to determine the total failure of the system, the sum of all failures for 

each simulation is averaged over the total number of simulations, as seen in Equation 8.5: 
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𝑃𝑓 =
∑ 𝑓

𝑛𝑠
 (8.5) 

where 𝑃𝑓 represents the total probability of failure of the system, ∑ 𝑓 represents the summation of 

failure for all simulations, and 𝑛𝑠 represents the total number of simulations in the system. 

The probability of failure for fleets of three, five, and seven patrol cars in each county are calculated as 

mentioned above. The output for each fleet is presented on a graph with a different failure for each 

individual patrol car in the fleet. The method of patrolling that allows officers to complete more cycles 

of patrolling within their given shift time is more desirable. This allows officers to have more of a 

presence in their county. 

With these results, the total failure of the system may then be determined for each fleet. It should be 

noted that the patrol cars in each fleet are independent of each other (the success/failure of one patrol 

car is not related to the success/failure of any other patrol car). However, despite the fact that each 

patrol car is independent, the success of the fleet as a whole system is dependent on the success all 

individual patrol cars. The success of the system for this first probability mode may be defined as all 

patrol cars being able to complete each consecutive cycle of patrolling. Knowing the probability of 

failure of the cars in each fleet, the probability of success may be defined by Equation 8.6: 

𝑃𝑠𝑠 = 1 − 𝑃𝑓 (8.6) 

where 𝑃𝑠𝑠 is the probability of success, and 𝑃𝑓is the probability of failure of each individual patrol car. 

Using the probability of success of each patrol car in a fleet, the probability of failure of the system may 

be found by Equation 8.7: 

𝑃𝑓𝑠 = 1 − ∏ 𝑃𝑠𝑠 (8.7) 

where 𝑃𝑓𝑠 represents the probability of failure of the system, and 𝑃𝑠 represents the probability of 

success of the system. The results of the system failure will show one value of failure for each fleet. For 

example, there will only be one failure result for a whole fleet of three cars instead of three individual 

results for each car in the fleet. Additionally, the system will then show a separate result for the fleet of 

five patrol cars and the fleet of seven patrol cars. Typically the system failure occurs when the first 

patrol car in a fleet fails. This is because an entire fleet may not succeed unless all individual cars in the 

fleet succeed for each cycle. 

This first failure mode determines the maximum number of cycles each patrol car in a fleet of three, 

five, and seven patrol cars is capable of completing in the three hour shift time. The failure for each fleet 

depends on the total time it takes for each patrol to travel through their respected route and the total 

time of simulated pullovers for each patrol. This failure mode may not only be used to help determine 

how many officers are needed in a fleet on a given night, but it is also used to compare the HSRO 

method of patrolling versus the traditionally used method of corridor patrolling. If one method is able to 
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patrol more cycles of their respected routes in a given shift time, that allows the officers to create more 

of a presence in the statistically significant areas. Additionally, if one method is able to patrol through 

their routes with less officers than the other, less money will be spent while patrolling for intoxicated 

drivers. 

8.3.2 Failure Mode 2 

The second application of failure probability compares the chance that officers patrolling on a given shift 

are more costly than the cost of potential pullovers for the county. Law enforcement agencies often see 

a strict amount of budgeting and manpower restrictions. This second failure mode may help to justify 

the current restrictions or it may justify an increase in funds to help improve the cause of reducing the 

amount of alcohol-related crashes.  

The second failure mode begins with a LSF defined as the system failing when the cost of sending 

officers to patrol (demand model) is greater than the cost of potential pullovers (capacity model). Both, 

the capacity and demand model, are dependent on a number of variables from the previous chapter. 

The capacity model is dependent on the number of pullovers for each individual patrol car in each fleet. 

The occurrence of pullovers is determined using a Poisson distribution, similar to the first failure mode 

and the model is run through total of 100,000 simulations. A cost is associated with each pullover, based 

on fines and penalties the driver is responsible for, and determined using a triangular distribution with a 

low cost of $250, a mean cost of $630, and a high cost of $1000 (NOLO, 2016). These costs are randomly 

assigned to each pullover in each patrol car in the 100,000 simulations. The total cost of the pullovers 

for each simulated patrol make up the capacity model for the LSF, and may be seen in Equation 8.8: 

𝐶𝑝 = ∑ 𝐶𝑢𝑝 (8.8) 

where 𝐶𝑝 is the total cost of pullovers for each simulated patrol, and ∑ 𝐶𝑢𝑝 is the summation of the cost 

of each individual pullover for each simulation. 

In order to calculate the demand model the cost of miles driven and the cost of manpower is 

determined. For the purposes of this research, the cost of miles is based off the Internal Revenue 

Service (IRS) standard mileage rates from 2013 at 56.5 cents per mile, while the cost of manpower is 

randomly determined again using a triangular distribution with a low rate of $21 per hour, a mean rate 

of $28 per hour and a maximum rate of $37 per hour. These costs are provided through the United 

States Bureau of Labor Statistics (2015) and represent the 25, 50, and 75 percentile of hourly police 

officer wages in the country. The cost of miles is found using Equation 8.9: 

Cmi = 0.01 ∗ cmi ∗ Tmi (8.9) 

where Cmi  represents the cost of miles for each patrol car in the simulated fleets (in dollars), cmi 

represents the IRS rate of mileage cost, and Tmi represents the total miles traveled by each officer in a 
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given shift, based on the results from the HSRO and corridor patrols in the previous chapter. Next, the 

cost of manpower is calculated by Equation 8.10: 

Cmp = cman ∗ Tsh (8.10) 

where Cmp is the cost of manpower associated with each car in the simulated fleet, cman is the hourly 

wage an officer makes, which is randomly determined from the previously defined triangle distribution, 

and Tsh is the total shift time, also previously defined as three hours. The total cost of miles and 

manpower are then used to determine the total cost of patrolling for the cars in each simulation, as 

described in Equation 8.11: 

𝐶𝑝𝑎 = 𝐶𝑚𝑝 + 𝐶𝑚𝑖 (8.11) 

where 𝐶𝑝𝑎 represents the cost of the individual patrols for each simulation, 𝐶𝑚𝑝 represents the cost of 

manpower for each patrol, and 𝐶𝑚𝑖 represents the mileage cost for each patrol. The total cost of 

patrolling for each simulated shift is the final variable that makes up the demand model for the second 

mode failure probability. 

Using the cost of patrolling and cost of pullovers, failure may be calculated using the previously defined 

LSF, as seen in Equation 8.12: 

𝑓 = (𝐶𝑝 − 𝐶𝑚 ≤ 0) (8.12) 

where 𝑓 represents the failure of each patrol car for each simulation, 𝐶𝑝 represents the cost of pullovers 

from each patrol car, and 𝐶𝑚 represents the cost of each patrol’s mission. The failure in each mission is 

similar to the first failure mode. When the value of the failure is negative, the model fails, and the failure 

is denoted as a one.  When the value of failure is positive, the model is successful, indicating that the 

cost of pullovers is more than the cost of patrolling, and the failure is denoted as a zero. Finally, the 

probability of failure for each individual patrol car in each fleet is determined by averaging the failure for 

each simulation over the total number of simulations, as seen in Equation 8.13: 

𝑃𝑓𝑐 =
∑ 𝑓

𝑛𝑠
 (8.13) 

where 𝑃𝑓𝑐 represents the total probability of failure of the system, ∑ 𝑓 represents the summation of 

failure for all simulations, and 𝑛𝑠 represents the total number of simulations in the system. Equation 

8.13 represents the probability of failure for each individual patrol car in a fleet. This method is repeated 

for fleets of three, five, and seven patrol cars in each county. 

Once the probability of failure is determined for each car in each fleet, the probability of failure for the 

system is determined. The system failure is determined by how often the total cost of patrolling for a 

whole fleet in a given shift is greater than the total cost of pullovers over the 100,000 simulations. This 

may be seen through Equation 8.14: 
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𝑓𝑎𝑙𝑙 = (𝐶𝑝𝑢𝑎 − 𝐶𝑚𝑎 ≤ 0)  (8.14) 

where 𝑓𝑎𝑙𝑙 represents the total failure for each simulation, 𝐶𝑝𝑢𝑎 represents the total cost of pullovers in 

each simulation, and 𝐶𝑚𝑎 represents the total cost of missions of the fleets in each simulation. The 

denotations are similar to the failures in Equations 8.4 and 8.12 where a negative value represents a 

failure and is denoted as a one, and a positive value represents a success and is denoted by a zero. 

Finally, the probability of failure of the whole system for each fleet is found by averaging out the total 

number of failures over the total number of simulations, as seen in Equation 8.15: 

𝑃𝑓𝑎 =
∑ 𝑓𝑎𝑙𝑙

𝑛𝑠
 (8.15) 

where 𝑃𝑓𝑎 represents the probability of failure of the system, ∑ 𝑓𝑎𝑙𝑙 represents the total sum of failures 

in all simulations, and 𝑛𝑠 represents the total number of simulations. 

The second failure mode is evaluated for all counties at three, five, and seven patrol cars for the HSRO 

method of patrolling and patrolling through corridors. Using this mode of failure probability, it may be 

possible to determine if one method of patrolling is more cost effective than the other. If the system of 

one method of patrolling shows a lesser chance that the cost of manpower is greater than the cost of 

potential pullovers, captains may consider utilizing that method of patrolling. 

The results of each failure mode may help to determine any significant differences between the HSRO 

method of patrolling and patrolling through the traditional method of patrolling through corridors. 

Additionally, these results may justify current practices of patrolling for intoxicated drivers, or the 

benefit of implementing new practices of patrolling. The goal of these methods of failure probability is 

to determine which method may be most effective and efficient in patrolling for intoxicated drivers and 

reducing the amount of alcohol-related crashes.  

8.4 RESULTS 

The final results of the first failure mode show a comparison of the traditional method of corridor 

patrolling and the proposed method of HSRO patrolling. The results of the first failure mode compare 

the amount of cycles each fleet is able to complete in a given shift time for each method of patrolling. 

Fleets that are able to patrol through more cycles in a given shift may show more of a presence in the 

county as well as have a higher potential to reduce the amount of alcohol-related crashes. It should be 

reiterated that these results are based off the routing results from CHAPTER 7:  where the results of the 

routes for the corridor model were used as restrictions for the routes in the HSRO model. Results for the 

first failure mode comparing corridor patrolling and patrolling through HSRO for Franklin, Summit, and 

Ross Counties may be seen in Figure 8.4.1, Figure 8.4.2, and Figure 8.4.3. 
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Figure 8.4.1: Results of First Failure Mode for Franklin County. 
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Figure 8.4.2: Results of First Failure Mode for Summit County. 
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Figure 8.4.3: Results of First Failure Mode for Ross County. 

Note: Figures 1-3 are developed using MATLAB and are based on the time results from CHAPTER 7: . 

Figure 8.4.1, Figure 8.4.2, and Figure 8.4.3 show the comparison between corridor patrolling and 

patrolling through HSRO for Franklin, Summit, and Ross Counties, respectively. It is important to 



100 

consider the amount of cycles each individual officer is able to complete because the goal is for each 

officer to complete the maximum amount of cycles before failing. This is to ensure that officers are able 

to show the maximum amount of presence on the roads to deter people from driving intoxicated. When 

a failure occurs, this means the officer is unable to completely patrol the next consecutive cycle without 

going over the allotted time in their shift, and the chance for deterring intoxicated drivers has ended.  

Results for Franklin County are very similar between the two methods of patrolling. This is due to fact 

that the results for patrolling through corridors are used as restrictions for patrolling through the HSRO. 

For fleets of three, five, and seven patrols, both methods of patrolling allow officers to complete the 

same amount of cycles. However minor differences appear when considering they, the officers, are to 

complete each cycle. This may be seen in a fleet of seven patrol cars where the corridor method of 

patrolling allows three officers to complete four cycles of patrolling and one officer to complete five 

cycles of patrolling before failing, but the HSRO method of patrolling only allows two officers to 

complete four cycles of patrolling before failing. 

When comparing the fleets as a system, again both methods of patrolling are very similar for Franklin 

County. Each fleet of patrol cars is able to complete the same number of cycles for both methods. It may 

be noted that for fleets of three and seven patrol cars, officers are able to complete two and three 

consecutive cycles before failing, however the system failure for each fleet appears to show a failure at 

two and three cycles, indicating officers are unable to complete these cycles. This is a result of how the 

probability of failure is calculated in a system with independent variables to determine the failure of the 

fleets. Since the chance of failure is so high for the individual patrol cars, the system approaches failure 

at that value.  

Summit County is very similar to Franklin County, in that the results of the corridor patrolling were used 

as restrictions for patrolling through HSRO. Each individual fleet of vehicles is able to complete the same 

amount of patrols, however the individual cars in each fleet differ in results. The HSRO method of 

patrolling has more cars completing more cycles of patrolling for fleets of five and seven patrols. This is 

beneficial because it allows for more officers to have an increased presence while patrolling for 

intoxicated drivers, indicating a greater effect of deterrence. This is also beneficial when considering 

how the systems for each fleet are calculated.  

The fleet systems in Summit County ultimately yield the same failures for each method of patrolling, 

however the chance of failure for each cycle is significantly different. For example, when patrolling 

through two cycles, the corridor method of patrolling has a much larger chance of failure than the HSRO 

method of patrolling. This is similar for when three and four cycles are patrolled through each method. 

These trends indicate that the HSRO method of patrolling may be more reliable since officers are less 

likely to be unable to complete patrolling their cycle in the given shift time for each consecutive cycle. 

Again, the system failure for Summit County appears to occur earlier than the individual fleets for five 

and seven patrols due to how the probability of failure is determined with a series of independent 

variables. 
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Finally, the comparison between the corridor method of patrolling and the HSRO method of patrolling 

are analyzed for Ross County. Since the time results for the corridor method of patrolling are much 

greater than the time results for the HSRO method of patrolling, as seen in Table 7.4.3, the failure 

probability results are also much different. For every fleet that is deployed, officers patrolling the HSRO 

method are consistently able to complete more cycles than while patrolling the corridor method. This 

allows for much more presence of officers, especially in the statistically significant locations of Ross 

County.  

When considering the fleets of each method of patrolling in Ross County, results are consistent with the 

individual fleets. Officers patrolling through corridors are only able to complete one cycle of patrolling 

for fleets of five and seven cars. However, the HSRO method of patrolling allows officers to complete 

four and five cycles of patrolling for fleets of five and seven patrols. This again allows for much more of a 

presence of officers, as well as more time patrolling in the statistically significant locations to deter and 

reduce the amount of intoxicated drivers.  

For the system of each fleet, it may be beneficial to consider the value of the probability of failure 

different fleet. This may help to determine the exact differences between officers patrolling through 

corridors and officers patrolling through HSRO. Table 8.4.1 shows the system failure results for Franklin, 

Summit, and Ross counties. 
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Table 8.4.1: Probability of Failure for Franklin, Ross, and Summit County Fleet Systems 

 

3 5 7 3 5 7

1 0.52 0.42 0.43 0.55 0.48 0.45

2 1.00 0.91 0.86 1.00 0.96 0.88

3 1.00 1.00 1.00 1.00 1.00 1.00

1 0.44 0.37 0.38 0.04 0.02 0.01

2 0.98 0.82 0.75 0.55 0.12 0.06

3 1.00 1.00 0.98 1.00 0.59 0.22

4 1.00 1.00 1.00 1.00 1.00 0.66

5 1.00 1.00 1.00 1.00 1.00 1.00

1 1.00 0.85 0.78 0.28 0.26 0.29

2 1.00 1.00 1.00 0.77 0.55 0.53

3 1.00 1.00 1.00 1.00 0.86 0.81

4 1.00 1.00 1.00 1.00 0.99 0.97

5 1.00 1.00 1.00 1.00 1.00 1.00

Note: The bold numbers indicate failure probability values rounded to 

one, however the values themselves do not equal one.

Probability of Failure Values for Systems of Fleets in Each County

Cars in Fleet (HSRO)Cars in Fleet (Corridor)

Franklin County System Results

Cycles

Summit County System Results

Ross County System Results

Note: This table shows the probability of failure of fleets of three, five, and 

seven patrol cars in each county based on the travel time of each patrol and 

a rate of 1.5 pullovers per officer per hour.

The system failure results, described in Section 8.3.1 , may be seen in Table 8.4.1. These results show 

the probability of failure of each consecutive cycle for the different number of fleets in each county. 

When the value equals a one, this means the fleet has failed, or is unable to complete the next 

consecutive cycle. Once the system fails, it is unable to come back, explaining why some fleets show 

multiple failures. 

The system failure results seen in Table 8.4.1 may help to determine the differences between the two 

methods of patrolling. These results match with graphs (d) and (h) in Figures 8.4.1-8.4.3. When 

considering Franklin County, the chances of failure for each consecutive cycle in the fleets are extremely 

close to each other. For example, when a fleet of five patrol cars are deployed, the corridor method of 

patrolling has a 42% and 91% chance of failure while completing one and two cycles, respectively, where 

the HSRO method of patrolling has a 48%  and 96% chance of failure for completing one and two cycles, 

respectively. This means that nearly half the time, a fleet of five officers will only be able to complete 
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one cycle of patrolling. Though the failure results are so close, the HSRO method of patrolling has 

officers travelling through the statistically significant locations identified through the hot spots. This 

allows for a greater chance of locating intoxicated drivers through the HSRO method of patrolling. 

Again, similar results are found when comparing the methods of patrolling for Summit County. When 

three and five fleets of patrols are deployed, the HSRO and corridor methods of patrolling are able to 

complete the same amount of cycles. However, the chances of failure are much lower for the HSRO 

method of patrolling. An example of this is seen in the fleet of five patrols which yields a 2%, 12%, and 

59% chance of failure for 1-3 cycles of patrolling through HSRO, where the corridor method of patrolling 

yields a 37%, 82%, and nearly 100% chance of failure. This means that officers are much more likely to 

complete up to three cycles of their route while patrolling for intoxicated drivers in the HSRO method of 

patrolling. This allows officers to be more visible, and have a much greater chance of stopping and 

deterring intoxicated drivers than while patrolling through corridors. 

When comparing the systems of fleets for each method of patrolling in Ross County, the results reflect 

the individual results from each fleet. This may be seen in Figure 3, and also in the failure probability 

values in Table 8.4.1. When a fleet of seven cars is deployed for the corridor method of patrolling, the 

fleet has a 78% chance of failure at one cycle. This means that officers are fairly unlikely to complete 

even one cycle of patrolling given the rate of pullovers for Ross County. However, when a fleet of seven 

cars are deployed for patrolling through the HSRO method, officers have a 53% chance of failure at two 

cycles. This indicates that officers are more likely to complete more cycles while patrolling through 

HSRO than while patrolling through corridors. This allows officers to have a greater presence to deter 

intoxicated drivers while also having more of a chance of stopping intoxicated drivers. Additionally, 

officers patrolling through HSRO are present in the statistically significant areas as defined by the hot 

spot analyses.  

When considering a captain’s perspective based on the results of the first failure probability model for 

each county, officer are able to patrol the same, or more cycles through the HSRO method of patrolling 

than the corridor method. Additionally, officers generally have less of a probability of failure while 

patrolling through the HSRO method, indicating greater chance they are able to complete each 

consecutive route, showing more of a presence to both deter and reduce the amount of intoxicated 

drivers. Additionally, this gives officers a presence through the statistically significant areas as identified 

through hot spot analyses. When considering captains in the decision making process, a captain may be 

able to use these results to determine the fleet size in a given night. These decisions may be dependent 

on funding available or the level of concern in a given night for intoxicated drivers, such as when 

patrolling through DSOGPO campaigns. 

The results of the second failure probability mode compare the chance that the cost of sending a fleet of 

officers to patrol for intoxicated drivers is less than the cost of the potential pullovers. The chance of 

potential pullovers is based on the previously defined 1.5 pullovers per hour for a patrol car, and the 

time and distance results of the routes for each county in CHAPTER 7:  are used to develop this failure 
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mode. The goal of this failure mode is to determine if it is more costly to fund patrols when considering 

the chance of pullovers for each county. The results for each individual fleet in all counties are compiled 

and may be seen in the appendices. The final results are then compiled from each system of fleets for 

each county, which may also be seen in the appendices. It may be noted that the chance of failure for 

the individual patrols in each county are much higher than the fleets as a system results for each county. 

This is explained in the methodology, section 8.3.2 , where the total cost of pullovers for all patrol cars is 

compared to the total cost of the fleet. In most cases, the total cost of pullovers far exceeds the cost to 

run the fleet, resulting in a lower chance, or no chance, of failure for the systems. The failure rates for 

each county seen in Table 8.4.2. 

Table 8.4.2: Failure Mode Two System Failure Results for Each County 

 

3 5 7 3 5 7

Franklin 0.000 0.000 0.000 0.000 0.000 0.000

Summit 0.000 0.000 0.000 0.000 0.000 0.000

Ross 0.000 0.000 0.000 0.000 0.000 0.000

Failure Mode 2 System Results

Cycles
Cars in Fleet (Corridor) Cars in Fleet (HSRO)

Note: This table is based on the randomly distributed cost of pullovers 

and cost of manpower, given a rate of 1.5 pullovers per officer per hour.

Table 8.4.2 shows the results of the second failure mode for each fleet in Franklin, Summit, and Ross 

counties. Since the rate of pullovers in each county is set at 1.5 pullovers per hour, and the designated 

shift time is 3 hours, cost of total potential pullovers in for each fleet in each county is constantly greater 

than the cost it would take to patrol for intoxicated drivers. The results of failure mode two indicate that 

patrolling for intoxicated drivers is always worth the cost since there is nearly zero chance of not having 

enough pullovers to outweigh the cost of manpower and equipment. 

The rate of 1.5 pullovers per hour has been a constant variable used throughout this research. Maistros 

et al. (2016) found this average rate of pullovers through research conducted in Stark County, Ohio. 

Though this research uses a rate of 1.5 pullovers per hour, it is not guaranteed that officers throughout 

the whole state, or nation, have the same efficiency of stops. 

Since failure mode two shows a probability of failure equal to zero for each scenario of patrolling, it may 

be beneficial to conduct the test with different rates of pullovers. Conducting failure mode two at 

different rates of pullovers will both account for different rates of pullovers for different jurisdictions, 

but also determine the rate of pullovers where a chance of failure is present. Since a rate of 1.5 

pullovers per hour has virtually zero chance that the cost of patrolling for intoxicated drivers is more 

costly than the pullovers conducted, theoretically any higher rate of pullovers will also yield the same 

results. Because of this, the maximum rate of pullovers studied will remain at 1.5 pullovers per hour. 
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The systems of fleets for Franklin, Summit, and Ross counties is modeled for rates of 1.25, 1.0, 0.75, 0.5, 

and 0.25 pullovers per hour per officer. The results for the fleet systems may be seen in Table 8.4.3. 

Table 8.4.3: Sensitivity Analysis of Failure Mode Two for Franklin, Ross and Summit Counties 

 

3 5 7 3 5 7

Franklin 0.000 0.000 0.000 0.000 0.000 0.000

Summit 0.000 0.000 0.000 0.000 0.000 0.000

Ross 0.000 0.000 0.000 0.000 0.000 0.000

Franklin 0.000 0.000 0.000 0.000 0.000 0.000

Summit 0.000 0.000 0.000 0.000 0.000 0.000

Ross 0.000 0.000 0.000 0.000 0.000 0.000

Franklin 0.000 0.000 0.000 0.000 0.000 0.000

Summit 0.000 0.000 0.000 0.000 0.000 0.000

Ross 0.000 0.000 0.000 0.000 0.000 0.000

Franklin 0.002 0.000 0.000 0.002 0.000 0.000

Summit 0.003 0.000 0.000 0.002 0.000 0.000

Ross 0.002 0.000 0.000 0.002 0.000 0.000

Franklin 0.017 0.004 0.001 0.017 0.004 0.001

Summit 0.019 0.004 0.001 0.018 0.004 0.001

Ross 0.017 0.004 0.001 0.018 0.004 0.000

Franklin 0.138 0.098 0.050 0.138 0.095 0.049

Summit 0.143 0.099 0.051 0.142 0.100 0.052

Ross 0.136 0.093 0.052 0.135 0.092 0.053

1.5

Note: This table is based on the randomly distributed cost of pullovers and cost of 

manpower, given the different rates of pullovers.

Failure Mode 2 Sensitivity Analysis System Results

Cycles
Cars in Fleet (Corridor) Cars in Fleet (HSRO)Pullover 

Rate

1.25

1

0.75

0.5

0.25

Table 8.4.3 shows the chance that officers patrolling for intoxicated drivers are more costly than the 

pullovers themselves. As the rate of pullovers decreases, the chance of failure increases for both 

methods of patrolling. When anything rates that is greater than one pullover per hour shows a 

probability of failure of zero. This is a promising result, meaning that there is zero chance that the cost 

of patrolling will be greater than the cost of potential pullovers in every scenario. As the rate of 

pullovers are reduced to below one pullover per hour, a probability of failure becomes present, 

indicating that there is now a chance that the cost of patrolling may be greater than the cost of potential 

pullovers. 

For example, if an officer has a rate of 0.25 pullovers per hour, the officer will on average speak to one 

driver in four hours. Since the rate of pullovers is an average and the amount of actual pullovers is 

randomly distributed over 100,000 simulations, there may be situations where officers have zero or one 
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pullover per three hour shift. However, since the failure of the system combines the pullovers from the 

cars in each fleet, the chance of failure decreases as the amount of patrol cars in the fleet increases. 

Similarly, the rates of failure also increase as the rate of pullovers decreases. This is because fewer 

pullovers indicates less money going toward the cost of pullovers, and with the same amount of officers 

patrolling, the probability that the cost of patrolling is greater than the cost of pullovers increases. In 

each scenario, the chance of failure is extremely low, with the highest chance of failure being present 

when the pullover rate is 0.25 with a 13%-14% chance of failure with a fleet of three patrol cars. Given 

that these are the highest rate of failure, they remain significantly low.  

The probability of failure for each rate of pullovers is very similar between the HSRO method of 

patrolling and patrolling through corridors. Table 8.4.3 shows a fraction of a difference between the two 

methods of patrolling, occasionally showing zero difference. However, it may be noted that the HSRO 

method of patrolling continues to have officers driving through the statistically significant areas, as 

defined through hot spot analyses, in each county. The use of failure mode two may be beneficial for 

captains in the decision making process when determining patrols for a given night. This failure mode 

may also be an indication that the cost of patrolling is not an issue considering the rate that officers may 

be able to stop intoxicated drivers. 

With failure rates this low, captains may be confident in knowing that sending officers to patrol for 

intoxicated drivers will be less costly than the chances of pulling over potentially intoxicated drivers. 

Additionally, since there is very little chance that there will be zero pullovers in a given shift time, 

captains may be more confident in sending any size of fleet out to patrol. The results of the second 

failure mode ultimately show the chance that is it more costly to patrol for intoxicated drivers, than the 

cost of pullovers themselves. These results may assist captains in the decision making process when 

determining fleet sizes for a given night of patrolling. 

8.5 CONCLUSION 

With the ultimate goal of this research going towards reducing the amount of alcohol-related crashes, it 

is beneficial to use mathematical methods that help to justify all models that have been created. This 

chapter utilizes two modes of failure probability that may justify the use of different patrol methods and 

give captains a guide when determining fleet sizes. The first mode of failure probability determined the 

maximum number of cycles an officer may be able to patrol in a given shift time. For Franklin and 

Summit Counties, the results were very similar between the corridor and HSRO methods of patrolling. 

For Ross County, the HSRO method of patrolling consistently allowed officers to complete more cycles in 

the given shift for every fleet size. The results were similar between the two methods of patrolling for 

Franklin and Summit Counties, the HSRO method of patrolling guides officers through the statistically 

significant areas of alcohol-related crashes in each county. Since these areas are statistically significant, 

the chance of officers locating intoxicated drivers may be increased.  



107 

The second mode of failure probability determines the chances that patrolling for intoxicated drivers is 

more costly than the chance of potential pullovers. Again, the results between the two methods of 

patrolling were similar, in that the system of fleets for both methods of patrolling had zero chance that 

the cost of sending officers to patrolling for intoxicated drivers was more costly than the potential 

pullovers themselves. Through the use of failure probability, it may be possible to determine the 

method of patrolling for intoxicated drivers that is most efficient as guide captains in decision-making 

practices with the ultimate hopes of reducing the amount of alcohol-related crashes.   
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CHAPTER 9:  CONCLUSION AND RECOMMENDATIONS 

9.1 INTRODUCTION 

The identification of crash locations is important to educators, enforcement, and engineers alike. 

Knowing where crashes are likely to occur provides a basis of where to implement safety plans. A scatter 

plot of crash locations may provide a general idea of where the crashes occur; however, it is difficult to 

draw any forthcoming results. In order to determine the distribution of crashes, an examination using 

spatial analysis must occur. While there are many spatial analysis options available, this research 

examines several improvements to advance the examination of crash patterns. These advancements 

pertain to: 1) the calculation of spatial autocorrelation and interpolation, 2) the identification of spatio-

temporal patterns, and 3) the influence of geographical patterns on the spatial distribution of crashes. 

Using the examination of crash patterns, new methods of patrolling are developed for officers to reduce 

the amount of intoxicated drivers. The objectives of the new methodology are including identification of 

significant areas for officers to patrol, comparison of methods of patrolling, and creation of failure 

probability models. 

9.2 CALCULATION OF SPATIAL AUTOCORRELATION AND INTERPOLATION 

Hot spot analysis allows for the identification of roadways that may be patrolled by law enforcement in 

an effort to reduce alcohol-related crashes. The roadways identified through a hot spot analysis provide 

a defined location where law enforcement may search for drivers who may be operating their vehicles 

while intoxicated. The use of a statistically backed analysis reduces the bias involved in determining 

roadways that law enforcement is assigned to patrol. Increased bias and the patrol of roadways that do 

not effectively address the problem of alcohol-related crashes may raise issues with the legality of a stop 

performed on a suspected driver. 

Through a comparison of the Euclidean and network distances, a large variance in the prediction 

accuracy index was identified for the calculation of the Getis-Ord Gi* statistic. The variations, however, 

are minimal within interpolation calculations of hot spots when using Euclidean distances and network-

based distances. Thus, while the use of network-based distances in the interpolation of hot spots is only 

slightly beneficial, the use of network-based distances within the calculation of the Gi* is crucial. By 

using network-based distances within the calculation of the Gi* and either measurement for the 

interpolation of hot spots, law enforcement would benefit from a more compact and efficient analysis. 

These benefits rise from the reduction of unnecessarily patrolled roadways and increases in societal 

crash costs; thus, improving the legality of roadways that are patrolled for impaired driving enforcement 

campaigns. 
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9.3 IDENTIFICATION OF SPATIO-TEMPORAL PATTERNS 

This research investigated both single and multiple vehicle alcohol-related crashes. While alcohol 

consumption is mainly a social behavior, spatio-temporal changes have a large effect in the distribution 

of crashes. A strong understanding of this distribution is essential to direct the efforts of educators and 

law enforcement, who attempt to reduce the overall occurrence of alcohol-related crashes. The 

examination of these crashes delves into the aspects of where and when these crashes occur and 

identifies differences between both types of crashes. By identifying shifts in the spatial patterns 

throughout time, the effects of implementations made to ensure safer roadways may be more 

pronounced. 

The movement of clusters separates the spatial analysis from the spatio-temporal analysis. The results 

indicate that hot spots may move widely throughout a given time span. Given these shifts in hot spot 

locations, law enforcement must also alter the location of safety campaigns designed to reduce the 

number and severity of alcohol-related crashes. If the location of safety campaigns does not change as 

time progresses, there exists a risk of implementing a safety campaign in a non-hot spot location. 

Additionally, due to changes in the size of hot spots, the type of patrol may need to be altered to 

address large, condensed hot spots rather than small, dispersed hot spots. 

9.4 INFLUENCE OF GEOGRAPHICAL PATTERNS ON THE SPATIAL DISTRIBUTION OF 

CRASHES 

In an effort to reduce alcohol-related crashes, the use of high visibility campaigns, saturation patrols, 

and corridor patrols are important tools utilized by law enforcement. The ability to identify the location 

to implement these tools relies on spatial analyses. Through spatial analysis, hot spots of crashes are 

able to be identified, and these hot spots statistically identify locations where law enforcement agencies 

should focus their efforts. In the creation of these maps, there is often concern that hot spot maps only 

target high population areas. In an effort to address this issue, this study examined the usefulness of 

normalizing these maps based on population density.  

The comparison of normalized to non-normalized hot spot maps returned a total of four different types 

of maps examined over eight counties. Variations are found between each of the four types of maps. 

These variations are directly related to the type of geographies that included the statistically significant 

hot spots. By analyzing these variations, it is discovered that normalizing the hot spots is not necessary. 

Differences between the examination of frequency and societal cost hot spot maps indicate a separation 

in the demographics being targeted. Those hot spots targeting high populations are found to result from 

hot spots based on the frequency of crashes. By examining hot spots based on the injury severity of 

crashes, the focus of high population areas was removed and the hot spots were dispersed among both 

urban and rural geographies. 
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9.5 IDENTIFICATION OF SIGNIFICANT AREAS FOR OFFICERS TO PATROL 

The first objective of identifying significant areas for officers to patrol initially uses hot spot analyses. 

The output of a hot spot analysis is comprised of local indicators of spatial association, with are location 

that each have a different value representing the statistical significance of that location. These locations, 

otherwise referred to as network locations, are compared at each significance level in each of the 

counties studied.  

To determine which confidence level should be used in patrolling, the amount of network locations is 

compared at each confidence level, and compared between the 90% and 95%, as well as 90% and 99%. 

Theses comparisons are used to determine if “too much” of the significant areas will be missed if 

officers are sent to patrol only the 95% or 99% confident network locations compared to patrolling 

every significant network location. Typically as the confidence level increases, the number of network 

locations decreases. As a result, this research looks into potentially having officers patrol only a specific 

level of confident network locations as opposed to every significant network location. Additionally, a 

number of radii of different lengths are placed around each of the 95% and 99% confident network 

locations in order determine if the amount of 90% confident network locations that are within a the 95% 

and 99% confident network locations. This may help to justify using a set of higher confidence network 

locations, and officers having fewer locations to patrol.  

Given the comparisons studied in this first objective, results show that it may be acceptable for officers 

to patrol only the 95% confident network locations. By patrolling only the 95% confident network 

locations, officers have fewer locations to patrol, while also patrolling the more significant locations, 

resulting in an increased efficiency. Though this objective is able to show the significant locations for 

officers to patrol, it does not show how officers should patrol these locations.  

9.6 COMPARISON OF METHODS OF PATROLLING  

Given the statistically significant hot spot locations of patrolling, the next step is to determine how 

officers should patrol these locations. This is completed through the use of Esri’s ArcGIS Vehicle Routing 

Problem. However, in order to give credibility to the HSRO method of patrolling, it is compared with the 

traditional method of corridor patrolling. This is completed by taking the top 15 corridors with the most 

amounts of alcohol-related crashes and using the times and fleet sizes as restrictions while routing 

officers through the HSRO method of patrolling.  

Once each method of patrolling is routed, the number of alcohol-related crash locations passed per time 

and per mile is compared for each county studied. Ultimately, the HSRO method of patrolling was able 

to pass through more alcohol-related crash locations per time and per mile for each fleet size and in 

each county. This indicates that not only are officers patrolling through the statistically significant 

locations in the HSRO method, but they are also able to pass through more alcohol-related crash 

locations when comparing to the corridor method of patrolling. 
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9.7 CREATION OF FAILURE PROBABILITY MODELS  

The use of failure probability models is common in many applications of civil engineering. This research 

created failure probability models to again compare the differences between the HSRO method of 

patrolling and patrolling through corridors. Two failure probability modes are created in this research.  

The first mode is used to determine the maximum amount of cycles each officer in a fleet is able to 

patrol, as well as the maximum amount of cycles a whole fleet is able to patrol before failing. Failure for 

this mode is defined as the chance that an officer has a being unable to complete each consecutive 

cycle. This model is built off the theory that increased presence of officers within an area results in a 

decrease of intoxicated drivers. Additionally, the increase in presence of officers allows them to have 

greater chances of locating intoxicated drivers. The first failure mode found that the HSRO method of 

patrolling is able to complete the same or more consecutive cycles in a given shift. This means that, 

again, not only are officers able to have more of a presence while patrolling, but they are also patrolling 

in the statistically significant areas, as defined by hot spot analyses. 

The second failure mode is used to determine the chance that the cost of patrolling is greater than the 

cost of potential pullovers. This is to determine the cost-effectiveness of patrolling for intoxicated 

drivers for both method of patrolling. The second failure mode is based on a rate of 1.5 pullovers per 

hour and a shift time of three hours. Results for each of the fleets showed a failure rate of zero, 

indicating that there is a zero percent chance that the value of patrolling is ever greater than the value 

of potential pullovers.  

A sensitivity analysis is then used to determine the rate of pullovers that will affect the failure rate of 

second failure mode. With a rate of pullovers equal to 0.5 pullovers per hour, the rates of failure for a 

fleet of three patrol cars is between one and two percent for both methods of patrolling. When the rate 

of pullovers is decreased to 0.25 pullovers per hour, the rates of failure for all three fleets are increased 

significantly. At a rate of 0.25 pullovers per hour, the chances that officers patrolling are unable to 

pullover enough people to outweigh the cost of patrolling are between 13% and 14% for a fleet of three 

cars, 9% and 10% for a fleet of five cars, and 4% and 5% for a fleet of seven cars. Despite the fact that 

the rates of failure for the second failure mode are extremely low, the HSRO method of patrolling may 

still be seen as more significant since it guides officers to significant locations as defined by hot spot 

analyses.  

9.8 FUTURE RECOMMENDATIONS 

This research shows new methods of patrolling based on the results of spatial analyses with the ultimate 

goal of reducing the amount of alcohol-related crashes. Future research may be utilized in a number of 

ways moving forward, beginning with the implementation of these methodologies, followed by a spatio-

temporal analysis to examine how the patterns of crashes vary over time. 
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9.8.1 Implementation of HSRO 

Though this research explains the methodologies of HSRO, implementation has not yet occurred. 

Contact with jurisdictions that recognize the DDACTS methodologies of improving patrols may be 

beneficial in sharing resources to implement this research. Through implementation, further studies on 

the amount of DUI’s and alcohol-related crashes that occur on nights of patrolling are may be used to 

determine validate the research. After small scale studies, this research may be expanded through 

multiple jurisdictions within the county or state to determine any legitimate results in reducing the 

amount of alcohol-related crashes 

9.8.2 Predicting Future Hot Spot Locations  

Hot spot analyses of crashes are continually used in the investigation of past crashes in order to identify 

the locations where crashes are occurring. This information is useful; however, by only looking for the 

locations of where crashes have occurred in the past, the analyses are being reactive instead of 

proactive. Such research would first have to apply spatio-temporal techniques to identify patterns of 

movement. These movements would then have to be related to changes occurring within the 

environment surrounding the crashes. The ability to use past crash data to predict the movement of 

crashes in the upcoming year would give safety campaigns a leading edge. 

9.9 CONCLUSIONS 

This research investigated and applied new techniques to analyze motor-vehicle crashes. This research 

aids in the advanced identification of hot spots for motor-vehicle crashes. This research examined the 

current state of the practice. In building upon this current state, the most up-to-date crash data and 

geographic information was examined. This data was analyzed using new techniques that improved the 

accuracy of identified hot spots, determined the movement of hot spots through time, and identified 

the relationship of spatial autocorrelation to geographic attributes. These analyses were used to 

develop new methods of patrolling for officers to reduce the amount of intoxicated drivers. The results 

of these analyses allow for increased efficiency of educational, enforcement, and engineering campaigns 

aimed at reducing the severity and occurrence of crashes. The efficiency is raised due to removal of 

unnecessarily patrolled roadways from enforcement campaigns, the identification of when and where 

safety campaigns should be located, and how the ideal location for different types of safety campaign 

may be identified by studying various aspects of crashes. Additionally, future research is needed that 

may build upon the results found from this study. 
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APPENDIX A. FAILURE PROBABILITY MODE 2 RESULTS 
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Figure A.1: Results of Second Failure Mode for Franklin County. 

 



A-3 

 

Figure A.2: Results of Second Failure Mode for Summit County. 
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Figure A.3: Results of Second Failure Mode for Ross County. 

 




